Abstract:The EdUKate project combines digital education, linguistics, translation studies, and machine translation to develop multilingual learning materials for Czech primary and secondary schools. Launched through collaboration between a major Czech academic institution and the country's largest educational publisher, the project is aimed at translating up to 9,000 multimodal interactive exercises from Czech into Ukrainian, English, and German for an educational web portal. It emphasizes the development and evaluation of a direct Czech-Ukrainian machine translation system tailored to the educational domain, with special attention to processing formatted content such as XML and PDF and handling technical and scientific terminology. We present findings from an initial survey of Czech teachers regarding the needs of non-Czech-speaking students and describe the system's evaluation and implementation on the web portal. All resulting applications are freely available to students, educators, and researchers.
Abstract:We present Charles Translator, a machine translation system between Ukrainian and Czech, developed as part of a society-wide effort to mitigate the impact of the Russian-Ukrainian war on individuals and society. The system was developed in the spring of 2022 with the help of many language data providers in order to quickly meet the demand for such a service, which was not available at the time in the required quality. The translator was later implemented as an online web interface and as an Android app with speech input, both featuring Cyrillic-Latin script transliteration. The system translates directly, compared to other available systems that use English as a pivot, and thus take advantage of the typological similarity of the two languages. It uses the block back-translation method, which allows for efficient use of monolingual training data. The paper describes the development process, including data collection and implementation, evaluation, mentions several use cases, and outlines possibilities for the further development of the system for educational purposes.
Abstract:As the quality of machine translation rises and neural machine translation (NMT) is moving from sentence to document level translations, it is becoming increasingly difficult to evaluate the output of translation systems. We provide a test suite for WMT19 aimed at assessing discourse phenomena of MT systems participating in the News Translation Task. We have manually checked the outputs and identified types of translation errors that are relevant to document-level translation.