Alert button
Picture for Maria Vakalopoulou

Maria Vakalopoulou

Alert button

Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning

Add code
Bookmark button
Alert button
Dec 08, 2021
Alessa Hering, Lasse Hansen, Tony C. W. Mok, Albert C. S. Chung, Hanna Siebert, Stephanie Häger, Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, Sulaiman Vesal, Mirabela Rusu, Geoffrey Sonn, Théo Estienne, Maria Vakalopoulou, Luyi Han, Yunzhi Huang, Mikael Brudfors, Yaël Balbastre, Samuel Joutard, Marc Modat, Gal Lifshitz, Dan Raviv, Jinxin Lv, Qiang Li, Vincent Jaouen, Dimitris Visvikis, Constance Fourcade, Mathieu Rubeaux, Wentao Pan, Zhe Xu, Bailiang Jian, Francesca De Benetti, Marek Wodzinski, Niklas Gunnarsson, Huaqi Qiu, Zeju Li, Christoph Großbröhmer, Andrew Hoopes, Ingerid Reinertsen, Yiming Xiao, Bennett Landman, Yuankai Huo, Keelin Murphy, Bram van Ginneken, Adrian Dalca, Mattias P. Heinrich

Figure 1 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 2 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 3 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 4 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Viaarxiv icon

MICS : Multi-steps, Inverse Consistency and Symmetric deep learning registration network

Add code
Bookmark button
Alert button
Nov 23, 2021
Théo Estienne, Maria Vakalopoulou, Enzo Battistella, Theophraste Henry, Marvin Lerousseau, Amaury Leroy, Nikos Paragios, Eric Deutsch

Figure 1 for MICS : Multi-steps, Inverse Consistency and Symmetric deep learning registration network
Figure 2 for MICS : Multi-steps, Inverse Consistency and Symmetric deep learning registration network
Figure 3 for MICS : Multi-steps, Inverse Consistency and Symmetric deep learning registration network
Figure 4 for MICS : Multi-steps, Inverse Consistency and Symmetric deep learning registration network
Viaarxiv icon

Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology

Add code
Bookmark button
Alert button
Sep 07, 2021
Joseph Boyd, Mykola Liashuha, Eric Deutsch, Nikos Paragios, Stergios Christodoulidis, Maria Vakalopoulou

Figure 1 for Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology
Figure 2 for Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology
Figure 3 for Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology
Figure 4 for Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology
Viaarxiv icon

Deep Reinforcement Learning for L3 Slice Localization in Sarcopenia Assessment

Add code
Bookmark button
Alert button
Aug 13, 2021
Othmane Laousy, Guillaume Chassagnon, Edouard Oyallon, Nikos Paragios, Marie-Pierre Revel, Maria Vakalopoulou

Figure 1 for Deep Reinforcement Learning for L3 Slice Localization in Sarcopenia Assessment
Figure 2 for Deep Reinforcement Learning for L3 Slice Localization in Sarcopenia Assessment
Figure 3 for Deep Reinforcement Learning for L3 Slice Localization in Sarcopenia Assessment
Viaarxiv icon

Exploring Deep Registration Latent Spaces

Add code
Bookmark button
Alert button
Jul 23, 2021
Théo Estienne, Maria Vakalopoulou, Stergios Christodoulidis, Enzo Battistella, Théophraste Henry, Marvin Lerousseau, Amaury Leroy, Guillaume Chassagnon, Marie-Pierre Revel, Nikos Paragios, Eric Deutsch

Figure 1 for Exploring Deep Registration Latent Spaces
Figure 2 for Exploring Deep Registration Latent Spaces
Figure 3 for Exploring Deep Registration Latent Spaces
Figure 4 for Exploring Deep Registration Latent Spaces
Viaarxiv icon

Multi-Source domain adaptation via supervised contrastive learning and confident consistency regularization

Add code
Bookmark button
Alert button
Jul 01, 2021
Marin Scalbert, Maria Vakalopoulou, Florent Couzinié-Devy

Figure 1 for Multi-Source domain adaptation via supervised contrastive learning and confident consistency regularization
Figure 2 for Multi-Source domain adaptation via supervised contrastive learning and confident consistency regularization
Figure 3 for Multi-Source domain adaptation via supervised contrastive learning and confident consistency regularization
Figure 4 for Multi-Source domain adaptation via supervised contrastive learning and confident consistency regularization
Viaarxiv icon

Weakly supervised pan-cancer segmentation tool

Add code
Bookmark button
Alert button
May 10, 2021
Marvin Lerousseau, Marion Classe, Enzo Battistella, Théo Estienne, Théophraste Henry, Amaury Leroy, Roger Sun, Maria Vakalopoulou, Jean-Yves Scoazec, Eric Deutsch, Nikos Paragios

Figure 1 for Weakly supervised pan-cancer segmentation tool
Figure 2 for Weakly supervised pan-cancer segmentation tool
Viaarxiv icon

Sparse convolutional context-aware multiple instance learning for whole slide image classification

Add code
Bookmark button
Alert button
May 06, 2021
Marvin Lerousseau, Maria Vakalopoulou, Nikos Paragios, Eric Deutsch

Figure 1 for Sparse convolutional context-aware multiple instance learning for whole slide image classification
Figure 2 for Sparse convolutional context-aware multiple instance learning for whole slide image classification
Figure 3 for Sparse convolutional context-aware multiple instance learning for whole slide image classification
Figure 4 for Sparse convolutional context-aware multiple instance learning for whole slide image classification
Viaarxiv icon

Cancer Gene Profiling through Unsupervised Discovery

Add code
Bookmark button
Alert button
Feb 11, 2021
Enzo Battistella, Maria Vakalopoulou, Roger Sun, Théo Estienne, Marvin Lerousseau, Sergey Nikolaev, Emilie Alvarez Andres, Alexandre Carré, Stéphane Niyoteka, Charlotte Robert, Nikos Paragios, Eric Deutsch

Figure 1 for Cancer Gene Profiling through Unsupervised Discovery
Figure 2 for Cancer Gene Profiling through Unsupervised Discovery
Figure 3 for Cancer Gene Profiling through Unsupervised Discovery
Figure 4 for Cancer Gene Profiling through Unsupervised Discovery
Viaarxiv icon