Abstract:Anomaly detection holds considerable industrial significance, especially in scenarios with limited anomalous data. Currently, reconstruction-based and unsupervised representation-based approaches are the primary focus. However, unsupervised representation-based methods struggle to extract robust features under domain shift, whereas reconstruction-based methods often suffer from low training efficiency and performance degradation due to insufficient constraints. To address these challenges, we propose a novel method named Compressed Global Feature Conditioned Anomaly Detection (CCAD). CCAD synergizes the strengths of both paradigms by adapting global features as a new modality condition for the reconstruction model. Furthermore, we design an adaptive compression mechanism to enhance both generalization and training efficiency. Extensive experiments demonstrate that CCAD consistently outperforms state-of-the-art methods in terms of AUC while achieving faster convergence. In addition, we contribute a reorganized and re-annotated version of the DAGM 2007 dataset with new annotations to further validate our method's effectiveness. The code for reproducing main results is available at https://github.com/chloeqxq/CCAD.




Abstract:In this paper, we introduce a new and challenging large-scale food image dataset called "ChineseFoodNet", which aims to automatically recognizing pictured Chinese dishes. Most of the existing food image datasets collected food images either from recipe pictures or selfie. In our dataset, images of each food category of our dataset consists of not only web recipe and menu pictures but photos taken from real dishes, recipe and menu as well. ChineseFoodNet contains over 180,000 food photos of 208 categories, with each category covering a large variations in presentations of same Chinese food. We present our efforts to build this large-scale image dataset, including food category selection, data collection, and data clean and label, in particular how to use machine learning methods to reduce manual labeling work that is an expensive process. We share a detailed benchmark of several state-of-the-art deep convolutional neural networks (CNNs) on ChineseFoodNet. We further propose a novel two-step data fusion approach referred as "TastyNet", which combines prediction results from different CNNs with voting method. Our proposed approach achieves top-1 accuracies of 81.43% on the validation set and 81.55% on the test set, respectively. The latest dataset is public available for research and can be achieved at https://sites.google.com/view/chinesefoodnet.