Abstract:Chemical reaction prediction remains a fundamental challenge in organic chemistry, where existing machine learning models face two critical limitations: sensitivity to input permutations (molecule/atom orderings) and inadequate modeling of substructural interactions governing reactivity. These shortcomings lead to inconsistent predictions and poor generalization to real-world scenarios. To address these challenges, we propose ReaDISH, a novel reaction prediction model that learns permutation-invariant representations while incorporating interaction-aware features. It introduces two innovations: (1) symmetric difference shingle encoding, which extends the differential reaction fingerprint (DRFP) by representing shingles as continuous high-dimensional embeddings, capturing structural changes while eliminating order sensitivity; and (2) geometry-structure interaction attention, a mechanism that models intra- and inter-molecular interactions at the shingle level. Extensive experiments demonstrate that ReaDISH improves reaction prediction performance across diverse benchmarks. It shows enhanced robustness with an average improvement of 8.76% on R$^2$ under permutation perturbations.
Abstract:Aligning molecular sequence representations (e.g., SMILES notations) with textual descriptions is critical for applications spanning drug discovery, materials design, and automated chemical literature analysis. Existing methodologies typically treat molecular captioning (molecule-to-text) and text-based molecular design (text-to-molecule) as separate tasks, relying on supervised fine-tuning or contrastive learning pipelines. These approaches face three key limitations: (i) conventional metrics like BLEU prioritize linguistic fluency over chemical accuracy, (ii) training datasets frequently contain chemically ambiguous narratives with incomplete specifications, and (iii) independent optimization of generation directions leads to bidirectional inconsistency. To address these issues, we propose RTMol, a bidirectional alignment framework that unifies molecular captioning and text-to-SMILES generation through self-supervised round-trip learning. The framework introduces novel round-trip evaluation metrics and enables unsupervised training for molecular captioning without requiring paired molecule-text corpora. Experiments demonstrate that RTMol enhances bidirectional alignment performance by up to 47% across various LLMs, establishing an effective paradigm for joint molecule-text understanding and generation.
Abstract:The latest advancements in multi-modal large language models (MLLMs) have spurred a strong renewed interest in end-to-end motion planning approaches for autonomous driving. Many end-to-end approaches rely on human annotations to learn intermediate perception and prediction tasks, while purely self-supervised approaches--which directly learn from sensor inputs to generate planning trajectories without human annotations often underperform the state of the art. We observe a key gap in the input representation space: end-to-end approaches built on MLLMs are often pretrained with reasoning tasks in 2D image space rather than the native 3D space in which autonomous vehicles plan. To this end, we propose S4-Driver, a scalable self-supervised motion planning algorithm with spatio-temporal visual representation, based on the popular PaLI multimodal large language model. S4-Driver uses a novel sparse volume strategy to seamlessly transform the strong visual representation of MLLMs from perspective view to 3D space without the need to finetune the vision encoder. This representation aggregates multi-view and multi-frame visual inputs and enables better prediction of planning trajectories in 3D space. To validate our method, we run experiments on both nuScenes and Waymo Open Motion Dataset (with in-house camera data). Results show that S4-Driver performs favorably against existing supervised multi-task approaches while requiring no human annotations. It also demonstrates great scalability when pretrained on large volumes of unannotated driving logs.
Abstract:Semantic Interpretability in Reinforcement Learning (RL) enables transparency, accountability, and safer deployment by making the agent's decisions understandable and verifiable. Achieving this, however, requires a feature space composed of human-understandable concepts, which traditionally rely on human specification and fail to generalize to unseen environments. In this work, we introduce Semantically Interpretable Reinforcement Learning with Vision-Language Models Empowered Automation (SILVA), an automated framework that leverages pre-trained vision-language models (VLM) for semantic feature extraction and interpretable tree-based models for policy optimization. SILVA first queries a VLM to identify relevant semantic features for an unseen environment, then extracts these features from the environment. Finally, it trains an Interpretable Control Tree via RL, mapping the extracted features to actions in a transparent and interpretable manner. To address the computational inefficiency of extracting features directly with VLMs, we develop a feature extraction pipeline that generates a dataset for training a lightweight convolutional network, which is subsequently used during RL. By leveraging VLMs to automate tree-based RL, SILVA removes the reliance on human annotation previously required by interpretable models while also overcoming the inability of VLMs alone to generate valid robot policies, enabling semantically interpretable reinforcement learning without human-in-the-loop.
Abstract:Reinforcement learning (RL) has demonstrated compelling performance in robotic tasks, but its success often hinges on the design of complex, ad hoc reward functions. Researchers have explored how Large Language Models (LLMs) could enable non-expert users to specify reward functions more easily. However, LLMs struggle to balance the importance of different features, generalize poorly to out-of-distribution robotic tasks, and cannot represent the problem properly with only text-based descriptions. To address these challenges, we propose ELEMENTAL (intEractive LEarning froM dEmoNstraTion And Language), a novel framework that combines natural language guidance with visual user demonstrations to align robot behavior with user intentions better. By incorporating visual inputs, ELEMENTAL overcomes the limitations of text-only task specifications, while leveraging inverse reinforcement learning (IRL) to balance feature weights and match the demonstrated behaviors optimally. ELEMENTAL also introduces an iterative feedback-loop through self-reflection to improve feature, reward, and policy learning. Our experiment results demonstrate that ELEMENTAL outperforms prior work by 42.3% on task success, and achieves 41.3% better generalization in out-of-distribution tasks, highlighting its robustness in LfD.




Abstract:Optimization for robot control tasks, spanning various methodologies, includes Model Predictive Control (MPC). However, the complexity of the system, such as non-convex and non-differentiable cost functions and prolonged planning horizons often drastically increases the computation time, limiting MPC's real-world applicability. Prior works in speeding up the optimization have limitations on solving convex problem and generalizing to hold out domains. To overcome this challenge, we develop a novel framework aiming at expediting optimization processes. In our framework, we combine offline self-supervised learning and online fine-tuning through reinforcement learning to improve the control performance and reduce optimization time. We demonstrate the effectiveness of our method on a novel, challenging Formula-1-track driving task, achieving 3.9\% higher performance in optimization time and 3.6\% higher performance in tracking accuracy on challenging holdout tracks.




Abstract:Interpretability in machine learning is critical for the safe deployment of learned policies across legally-regulated and safety-critical domains. While gradient-based approaches in reinforcement learning have achieved tremendous success in learning policies for continuous control problems such as robotics and autonomous driving, the lack of interpretability is a fundamental barrier to adoption. We propose Interpretable Continuous Control Trees (ICCTs), a tree-based model that can be optimized via modern, gradient-based, reinforcement learning approaches to produce high-performing, interpretable policies. The key to our approach is a procedure for allowing direct optimization in a sparse decision-tree-like representation. We validate ICCTs against baselines across six domains, showing that ICCTs are capable of learning policies that parity or outperform baselines by up to 33% in autonomous driving scenarios while achieving a 300x-600x reduction in the number of parameters against deep learning baselines. We prove that ICCTs can serve as universal function approximators and display analytically that ICCTs can be verified in linear time. Furthermore, we deploy ICCTs in two realistic driving domains, based on interstate Highway-94 and 280 in the US. Finally, we verify ICCT's utility with end-users and find that ICCTs are rated easier to simulate, quicker to validate, and more interpretable than neural networks.
Abstract:The need for opponent modeling and tracking arises in several real-world scenarios, such as professional sports, video game design, and drug-trafficking interdiction. In this work, we present Graph based Adversarial Modeling with Mutal Information (GrAMMI) for modeling the behavior of an adversarial opponent agent. GrAMMI is a novel graph neural network (GNN) based approach that uses mutual information maximization as an auxiliary objective to predict the current and future states of an adversarial opponent with partial observability. To evaluate GrAMMI, we design two large-scale, pursuit-evasion domains inspired by real-world scenarios, where a team of heterogeneous agents is tasked with tracking and interdicting a single adversarial agent, and the adversarial agent must evade detection while achieving its own objectives. With the mutual information formulation, GrAMMI outperforms all baselines in both domains and achieves 31.68% higher log-likelihood on average for future adversarial state predictions across both domains.
Abstract:We study a search and tracking (S&T) problem for a team of dynamic search agents to capture an adversarial evasive agent with only sparse temporal and spatial knowledge of its location in this paper. The domain is challenging for traditional Reinforcement Learning (RL) approaches as the large space leads to sparse observations of the adversary and in turn sparse rewards for the search agents. Additionally, the opponent's behavior is reactionary to the search agents, which causes a data distribution shift for RL during training as search agents improve their policies. We propose a differentiable Multi-Agent RL (MARL) architecture that utilizes a novel filtering module to supplement estimated adversary location information and enables the effective learning of a team policy. Our algorithm learns how to balance information from prior knowledge and a motion model to remain resilient to the data distribution shift and outperforms all baseline methods with a 46% increase of detection rate.
Abstract:As high-speed, agile robots become more commonplace, these robots will have the potential to better aid and collaborate with humans. However, due to the increased agility and functionality of these robots, close collaboration with humans can create safety concerns that alter team dynamics and degrade task performance. In this work, we aim to enable the deployment of safe and trustworthy agile robots that operate in proximity with humans. We do so by 1) Proposing a novel human-robot doubles table tennis scenario to serve as a testbed for studying agile, proximate human-robot collaboration and 2) Conducting a user-study to understand how attributes of the robot (e.g., robot competency or capacity to communicate) impact team dynamics, perceived safety, and perceived trust, and how these latent factors affect human-robot collaboration (HRC) performance. We find that robot competency significantly increases perceived trust ($p<.001$), extending skill-to-trust assessments in prior studies to agile, proximate HRC. Furthermore, interestingly, we find that when the robot vocalizes its intention to perform a task, it results in a significant decrease in team performance ($p=.037$) and perceived safety of the system ($p=.009$).