INFN sezione di Padova, Italy, University of Kaiserslautern-Landau
Abstract:A sophisticated hybrid quantum convolutional neural network (HQCNN) is conceived for handling the pilot assignment task in cell-free massive MIMO systems, while maximizing the total ergodic sum throughput. The existing model-based solutions found in the literature are inefficient and/or computationally demanding. Similarly, conventional deep neural networks may struggle in the face of high-dimensional inputs, require complex architectures, and their convergence is slow due to training numerous hyperparameters. The proposed HQCNN leverages parameterized quantum circuits (PQCs) relying on superposition for enhanced feature extraction. Specifically, we exploit the same PQC across all the convolutional layers for customizing the neural network and for accelerating the convergence. Our numerical results demonstrate that the proposed HQCNN offers a total network throughput close to that of the excessive-complexity exhaustive search and outperforms the state-of-the-art benchmarks.
Abstract:We simulate hadrons impinging on a homogeneous lead-tungstate (PbWO4) calorimeter to investigate how the resulting light yield and its temporal structure, as detected by an array of light-sensitive sensors, can be processed by a neuromorphic computing system. Our model encodes temporal photon distributions as spike trains and employs a fully connected spiking neural network to estimate the total deposited energy, as well as the position and spatial distribution of the light emissions within the sensitive material. The extracted primitives offer valuable topological information about the shower development in the material, achieved without requiring a segmentation of the active medium. A potential nanophotonic implementation using III-V semiconductor nanowires is discussed. It can be both fast and energy efficient.