INFN sezione di Padova, Italy, University of Kaiserslautern-Landau
Abstract:Increasing wireless network complexity demands scalable resource management. Classical GNNs excel at graph learning but incur high computational costs in large-scale settings. We present a fully quantum Graph Neural Network (QGNN) that implements message passing via Parameterized Quantum Circuits (PQCs). Our Quantum Graph Convolutional Layers (QGCLs) encode features into quantum states, process graphs with NISQ-compatible unitaries, and retrieve embeddings through measurement. Applied to D2D power control for SINR maximization, our QGNN matches classical performance with fewer parameters and inherent parallelism. This end-to-end PQC-based GNN marks a step toward quantum-accelerated wireless optimization.
Abstract:A sophisticated hybrid quantum convolutional neural network (HQCNN) is conceived for handling the pilot assignment task in cell-free massive MIMO systems, while maximizing the total ergodic sum throughput. The existing model-based solutions found in the literature are inefficient and/or computationally demanding. Similarly, conventional deep neural networks may struggle in the face of high-dimensional inputs, require complex architectures, and their convergence is slow due to training numerous hyperparameters. The proposed HQCNN leverages parameterized quantum circuits (PQCs) relying on superposition for enhanced feature extraction. Specifically, we exploit the same PQC across all the convolutional layers for customizing the neural network and for accelerating the convergence. Our numerical results demonstrate that the proposed HQCNN offers a total network throughput close to that of the excessive-complexity exhaustive search and outperforms the state-of-the-art benchmarks.
Abstract:We simulate hadrons impinging on a homogeneous lead-tungstate (PbWO4) calorimeter to investigate how the resulting light yield and its temporal structure, as detected by an array of light-sensitive sensors, can be processed by a neuromorphic computing system. Our model encodes temporal photon distributions as spike trains and employs a fully connected spiking neural network to estimate the total deposited energy, as well as the position and spatial distribution of the light emissions within the sensitive material. The extracted primitives offer valuable topological information about the shower development in the material, achieved without requiring a segmentation of the active medium. A potential nanophotonic implementation using III-V semiconductor nanowires is discussed. It can be both fast and energy efficient.