Alert button
Picture for Katharina Löffler

Katharina Löffler

Alert button

CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

Mar 14, 2023
Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Martin Weigert, Uwe Schmidt, Wenhua Zhang, Jun Zhang, Sen Yang, Jinxi Xiang, Xiyue Wang, Josef Lorenz Rumberger, Elias Baumann, Peter Hirsch, Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Ayushi Jain, Heeyoung Ahn, Yiyu Hong, Hussam Azzuni, Min Xu, Mohammad Yaqub, Marie-Claire Blache, Benoît Piégu, Bertrand Vernay, Tim Scherr, Moritz Böhland, Katharina Löffler, Jiachen Li, Weiqin Ying, Chixin Wang, Dagmar Kainmueller, Carola-Bibiane Schönlieb, Shuolin Liu, Dhairya Talsania, Yughender Meda, Prakash Mishra, Muhammad Ridzuan, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Banban Huang, Hsiang-Chin Chien, Ching-Ping Wang, Chia-Yen Lee, Hong-Kun Lin, Zaiyi Liu, Xipeng Pan, Chu Han, Jijun Cheng, Muhammad Dawood, Srijay Deshpande, Raja Muhammad Saad Bashir, Adam Shephard, Pedro Costa, João D. Nunes, Aurélio Campilho, Jaime S. Cardoso, Hrishikesh P S, Densen Puthussery, Devika R G, Jiji C V, Ye Zhang, Zijie Fang, Zhifan Lin, Yongbing Zhang, Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Vi Thi-Tuong Vo, Soo-Hyung Kim, Taebum Lee, Satoshi Kondo, Satoshi Kasai, Pranay Dumbhare, Vedant Phuse, Yash Dubey, Ankush Jamthikar, Trinh Thi Le Vuong, Jin Tae Kwak, Dorsa Ziaei, Hyun Jung, Tianyi Miao, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir M. Rajpoot

Figure 1 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Figure 2 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Figure 3 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Figure 4 for CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.

Viaarxiv icon

EmbedTrack -- Simultaneous Cell Segmentation and Tracking Through Learning Offsets and Clustering Bandwidths

Apr 25, 2022
Katharina Löffler, Ralf Mikut

Figure 1 for EmbedTrack -- Simultaneous Cell Segmentation and Tracking Through Learning Offsets and Clustering Bandwidths
Figure 2 for EmbedTrack -- Simultaneous Cell Segmentation and Tracking Through Learning Offsets and Clustering Bandwidths
Figure 3 for EmbedTrack -- Simultaneous Cell Segmentation and Tracking Through Learning Offsets and Clustering Bandwidths
Figure 4 for EmbedTrack -- Simultaneous Cell Segmentation and Tracking Through Learning Offsets and Clustering Bandwidths

A systematic analysis of the cell behavior requires automated approaches for cell segmentation and tracking. While deep learning has been successfully applied for the task of cell segmentation, there are few approaches for simultaneous cell segmentation and tracking using deep learning. Here, we present EmbedTrack, a single convolutional neural network for simultaneous cell segmentation and tracking which predicts easy to interpret embeddings. As embeddings, offsets of cell pixels to their cell center and bandwidths are learned. We benchmark our approach on nine 2D data sets from the Cell Tracking Challenge, where our approach performs on seven out of nine data sets within the top 3 contestants including three top 1 performances. The source code is publicly available at https://git.scc.kit.edu/kit-loe-ge/embedtrack.

* This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible 
Viaarxiv icon

ciscNet -- A Single-Branch Cell Instance Segmentation and Classification Network

Feb 25, 2022
Moritz Böhland, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Katharina Löffler, Tim Scherr

Figure 1 for ciscNet -- A Single-Branch Cell Instance Segmentation and Classification Network
Figure 2 for ciscNet -- A Single-Branch Cell Instance Segmentation and Classification Network
Figure 3 for ciscNet -- A Single-Branch Cell Instance Segmentation and Classification Network

Automated cell nucleus segmentation and classification are required to assist pathologists in their decision making. The Colon Nuclei Identification and Counting Challenge 2022 (CoNIC Challenge 2022) supports the development and comparability of segmentation and classification methods for histopathological images. In this contribution, we describe our CoNIC Challenge 2022 method ciscNet to segment, classify and count cell nuclei, and report preliminary evaluation results. Our code is available at https://git.scc.kit.edu/ciscnet/ciscnet-conic-2022.

* CoNIC Challenge 2022 submission 
Viaarxiv icon

Cell Segmentation and Tracking using Distance Transform Predictions and Movement Estimation with Graph-Based Matching

Apr 03, 2020
Tim Scherr, Katharina Löffler, Moritz Böhland, Ralf Mikut

Figure 1 for Cell Segmentation and Tracking using Distance Transform Predictions and Movement Estimation with Graph-Based Matching
Figure 2 for Cell Segmentation and Tracking using Distance Transform Predictions and Movement Estimation with Graph-Based Matching
Figure 3 for Cell Segmentation and Tracking using Distance Transform Predictions and Movement Estimation with Graph-Based Matching
Figure 4 for Cell Segmentation and Tracking using Distance Transform Predictions and Movement Estimation with Graph-Based Matching

In this paper, we present the approach used for our IEEE ISBI 2020 Cell Tracking Challenge contribution (team KIT-Sch-GE). Our method consists of a segmentation and a tracking step that includes the correction of segmentation errors (tracking by detection method). For the segmentation, deep learning-based predictions of cell distance maps and novel neighbor distance maps are used as input for a watershed post-processing. Since most of the provided Cell Tracking Challenge ground truth data are 2D, a 2D convolutional neural network is trained to predict the distance maps. The tracking is based on a movement estimation in combination with a matching formulated as a maximum flow minimum cost problem.

* 8 pages, 5 figures, algorithms used for the Cell Tracking Challenge competition at IEEE International Symposium on Biomedical Imaging (ISBI) 2020 
Viaarxiv icon