Abstract:Mixture-of-Experts (MoE) architectures employ sparse activation to deliver faster training and inference with higher accuracy than dense LLMs. However, in production serving, MoE models require batch inference to optimize hardware efficiency, which may cause excessive expert activation and thus slow the memory-bound decoding stage. To address the fundamental tension between batch decoding and expert sparsity, we present SERE, a Similarity-based Expert Re-routing method for Efficient batch decoding in MoE models. SERE dynamically reduces the number of active experts in an input-aware manner by re-routing tokens from secondary experts to their most similar primary counterparts. It also leverages similarity patterns to identify and preserve critical experts, thereby preventing capability loss. Notably, SERE avoids static expert pruning or merging, instead enabling dynamic expert skipping based on batch-level expert redundancy. Additionally, we provide an efficient custom CUDA kernel for SERE, enabling plug-and-play use in vLLM with only a single-line code change. Extensive experiments on various complex reasoning benchmarks demonstrate that SERE achieves up to 2.0x speedup with minimal quality loss, providing a practical solution for cost-efficient and latency-sensitive large-scale MoE deployment. Code implementation of SERE can be found in https://github.com/JL-Cheng/SERE.
Abstract:Vision modeling has advanced rapidly with Transformers, whose attention mechanisms capture visual dependencies but lack a principled account of how semantic information propagates spatially. We revisit this problem from a wave-based perspective: feature maps are treated as spatial signals whose evolution over an internal propagation time (aligned with network depth) is governed by an underdamped wave equation. In this formulation, spatial frequency-from low-frequency global layout to high-frequency edges and textures-is modeled explicitly, and its interaction with propagation time is controlled rather than implicitly fixed. We derive a closed-form, frequency-time decoupled solution and implement it as the Wave Propagation Operator (WPO), a lightweight module that models global interactions in O(N log N) time-far lower than attention. Building on WPO, we propose a family of WaveFormer models as drop-in replacements for standard ViTs and CNNs, achieving competitive accuracy across image classification, object detection, and semantic segmentation, while delivering up to 1.6x higher throughput and 30% fewer FLOPs than attention-based alternatives. Furthermore, our results demonstrate that wave propagation introduces a complementary modeling bias to heat-based methods, effectively capturing both global coherence and high-frequency details essential for rich visual semantics. Codes are available at: https://github.com/ZishanShu/WaveFormer.
Abstract:In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.