Learned image compression (LIC) has gained traction as an effective solution for image storage and transmission in recent years. However, existing LIC methods are redundant in latent representation due to limitations in capturing anisotropic frequency components and preserving directional details. To overcome these challenges, we propose a novel frequency-aware transformer (FAT) block that for the first time achieves multiscale directional ananlysis for LIC. The FAT block comprises frequency-decomposition window attention (FDWA) modules to capture multiscale and directional frequency components of natural images. Additionally, we introduce frequency-modulation feed-forward network (FMFFN) to adaptively modulate different frequency components, improving rate-distortion performance. Furthermore, we present a transformer-based channel-wise autoregressive (T-CA) model that effectively exploits channel dependencies. Experiments show that our method achieves state-of-the-art rate-distortion performance compared to existing LIC methods, and evidently outperforms latest standardized codec VTM-12.1 by 14.5%, 15.1%, 13.0% in BD-rate on the Kodak, Tecnick, and CLIC datasets.
Representation learning has been evolving from traditional supervised training to Contrastive Learning (CL) and Masked Image Modeling (MIM). Previous works have demonstrated their pros and cons in specific scenarios, i.e., CL and supervised pre-training excel at capturing longer-range global patterns and enabling better feature discrimination, while MIM can introduce more local and diverse attention across all transformer layers. In this paper, we explore how to obtain a model that combines their strengths. We start by examining previous feature distillation and mask feature reconstruction methods and identify their limitations. We find that their increasing diversity mainly derives from the asymmetric designs, but these designs may in turn compromise the discrimination ability. In order to better obtain both discrimination and diversity, we propose a simple but effective Hybrid Distillation strategy, which utilizes both the supervised/CL teacher and the MIM teacher to jointly guide the student model. Hybrid Distill imitates the token relations of the MIM teacher to alleviate attention collapse, as well as distills the feature maps of the supervised/CL teacher to enable discrimination. Furthermore, a progressive redundant token masking strategy is also utilized to reduce the distilling costs and avoid falling into local optima. Experiment results prove that Hybrid Distill can achieve superior performance on different benchmarks.
JPEG images can be further compressed to enhance the storage and transmission of large-scale image datasets. Existing learned lossless compressors for RGB images cannot be well transferred to JPEG images due to the distinguishing distribution of DCT coefficients and raw pixels. In this paper, we propose a novel framework for learned lossless compression of JPEG images that achieves end-to-end optimized prediction of the distribution of decoded DCT coefficients. To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy. An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients and independently compress the priors. We attempt to realize learned lossless compression of JPEG images in the frequency domain. Experimental results demonstrate that the proposed framework achieves superior or comparable performance in comparison to most recent lossless compressors with handcrafted context modeling for JPEG images.
There has been a recent surge of interest in introducing transformers to 3D human pose estimation (HPE) due to their powerful capabilities in modeling long-term dependencies. However, existing transformer-based methods treat body joints as equally important inputs and ignore the prior knowledge of human skeleton topology in the self-attention mechanism. To tackle this issue, in this paper, we propose a Pose-Oriented Transformer (POT) with uncertainty guided refinement for 3D HPE. Specifically, we first develop novel pose-oriented self-attention mechanism and distance-related position embedding for POT to explicitly exploit the human skeleton topology. The pose-oriented self-attention mechanism explicitly models the topological interactions between body joints, whereas the distance-related position embedding encodes the distance of joints to the root joint to distinguish groups of joints with different difficulties in regression. Furthermore, we present an Uncertainty-Guided Refinement Network (UGRN) to refine pose predictions from POT, especially for the difficult joints, by considering the estimated uncertainty of each joint with uncertainty-guided sampling strategy and self-attention mechanism. Extensive experiments demonstrate that our method significantly outperforms the state-of-the-art methods with reduced model parameters on 3D HPE benchmarks such as Human3.6M and MPI-INF-3DHP
Gradient coding schemes effectively mitigate full stragglers in distributed learning by introducing identical redundancy in coded local partial derivatives corresponding to all model parameters. However, they are no longer effective for partial stragglers as they cannot utilize incomplete computation results from partial stragglers. This paper aims to design a new gradient coding scheme for mitigating partial stragglers in distributed learning. Specifically, we consider a distributed system consisting of one master and N workers, characterized by a general partial straggler model and focuses on solving a general large-scale machine learning problem with L model parameters using gradient coding. First, we propose a coordinate gradient coding scheme with L coding parameters representing L possibly different diversities for the L coordinates, which generates most gradient coding schemes. Then, we consider the minimization of the expected overall runtime and the maximization of the completion probability with respect to the L coding parameters for coordinates, which are challenging discrete optimization problems. To reduce computational complexity, we first transform each to an equivalent but much simpler discrete problem with N\llL variables representing the partition of the L coordinates into N blocks, each with identical redundancy. This indicates an equivalent but more easily implemented block coordinate gradient coding scheme with N coding parameters for blocks. Then, we adopt continuous relaxation to further reduce computational complexity. For the resulting minimization of expected overall runtime, we develop an iterative algorithm of computational complexity O(N^2) to obtain an optimal solution and derive two closed-form approximate solutions both with computational complexity O(N). For the resultant maximization of the completion probability, we develop an iterative algorithm of...
Pooling and unpooling are two essential operations in constructing hierarchical spherical convolutional neural networks (HS-CNNs) for comprehensive feature learning in the spherical domain. Most existing models employ downsampling-based pooling, which will inevitably incur information loss and cannot adapt to different spherical signals and tasks. Besides, the preserved information after pooling cannot be well restored by the subsequent unpooling to characterize the desirable features for a task. In this paper, we propose a novel framework of HS-CNNs with a lifting structure to learn adaptive spherical wavelets for pooling and unpooling, dubbed LiftHS-CNN, which ensures a more efficient hierarchical feature learning for both image- and pixel-level tasks. Specifically, adaptive spherical wavelets are learned with a lifting structure that consists of trainable lifting operators (i.e., update and predict operators). With this learnable lifting structure, we can adaptively partition a signal into two sub-bands containing low- and high-frequency components, respectively, and thus generate a better down-scaled representation for pooling by preserving more information in the low-frequency sub-band. The update and predict operators are parameterized with graph-based attention to jointly consider the signal's characteristics and the underlying geometries. We further show that particular properties are promised by the learned wavelets, ensuring the spatial-frequency localization for better exploiting the signal's correlation in both spatial and frequency domains. We then propose an unpooling operation that is invertible to the lifting-based pooling, where an inverse wavelet transform is performed by using the learned lifting operators to restore an up-scaled representation. Extensive empirical evaluations on various spherical domain tasks validate the superiority of the proposed LiftHS-CNN.
It is promising to solve linear inverse problems by unfolding iterative algorithms (e.g., iterative shrinkage thresholding algorithm (ISTA)) as deep neural networks (DNNs) with learnable parameters. However, existing ISTA-based unfolded algorithms restrict the network architectures for iterative updates with the partial weight coupling structure to guarantee convergence. In this paper, we propose hybrid ISTA to unfold ISTA with both pre-computed and learned parameters by incorporating free-form DNNs (i.e., DNNs with arbitrary feasible and reasonable network architectures), while ensuring theoretical convergence. We first develop HCISTA to improve the efficiency and flexibility of classical ISTA (with pre-computed parameters) without compromising the convergence rate in theory. Furthermore, the DNN-based hybrid algorithm is generalized to popular variants of learned ISTA, dubbed HLISTA, to enable a free architecture of learned parameters with a guarantee of linear convergence. To our best knowledge, this paper is the first to provide a convergence-provable framework that enables free-form DNNs in ISTA-based unfolded algorithms. This framework is general to endow arbitrary DNNs for solving linear inverse problems with convergence guarantees. Extensive experiments demonstrate that hybrid ISTA can reduce the reconstruction error with an improved convergence rate in the tasks of sparse recovery and compressive sensing.
Graph pooling has been increasingly considered for graph neural networks (GNNs) to facilitate hierarchical graph representation learning. Existing graph pooling methods commonly consist of two stages, i.e., selecting the top-ranked nodes and removing the rest nodes to construct a coarsened graph representation. However, local structural information of the removed nodes would be inevitably dropped in these methods, due to the inherent coupling of nodes (location) and their features (signals). In this paper, we propose an enhanced three-stage method via lifting, named LiftPool, to improve hierarchical graph representation by maximally preserving the local structural information in graph pooling. LiftPool introduces an additional stage of graph lifting before graph coarsening to preserve the local information of the removed nodes and decouple the processes of node removing and feature reduction. Specifically, for each node to be removed, its local information is obtained by subtracting the global information aggregated from its neighboring preserved nodes. Subsequently, this local information is aligned and propagated to the preserved nodes to alleviate information loss in graph coarsening. Furthermore, we demonstrate that the proposed LiftPool is localized and permutation-invariant. The proposed graph lifting structure is general to be integrated with existing downsampling-based graph pooling methods. Evaluations on benchmark graph datasets show that LiftPool substantially outperforms the state-of-the-art graph pooling methods in the task of graph classification.
Recent 2D-to-3D human pose estimation works tend to utilize the graph structure formed by the topology of the human skeleton. However, we argue that this skeletal topology is too sparse to reflect the body structure and suffer from serious 2D-to-3D ambiguity problem. To overcome these weaknesses, we propose a novel graph convolution network architecture, Hierarchical Graph Networks (HGN). It is based on denser graph topology generated by our multi-scale graph structure building strategy, thus providing more delicate geometric information. The proposed architecture contains three sparse-to-fine representation subnetworks organized in parallel, in which multi-scale graph-structured features are processed and exchange information through a novel feature fusion strategy, leading to rich hierarchical representations. We also introduce a 3D coarse mesh constraint to further boost detail-related feature learning. Extensive experiments demonstrate that our HGN achieves the state-of-the art performance with reduced network parameters