Abstract:Despite the growing interest in leveraging Large Language Models (LLMs) for content analysis, current studies have primarily focused on text-based content. In the present work, we explored the potential of LLMs in assisting video content analysis by conducting a case study that followed a new workflow of LLM-assisted multimodal content analysis. The workflow encompasses codebook design, prompt engineering, LLM processing, and human evaluation. We strategically crafted annotation prompts to get LLM Annotations in structured form and explanation prompts to generate LLM Explanations for a better understanding of LLM reasoning and transparency. To test LLM's video annotation capabilities, we analyzed 203 keyframes extracted from 25 YouTube short videos about depression. We compared the LLM Annotations with those of two human coders and found that LLM has higher accuracy in object and activity Annotations than emotion and genre Annotations. Moreover, we identified the potential and limitations of LLM's capabilities in annotating videos. Based on the findings, we explore opportunities and challenges for future research and improvements to the workflow. We also discuss ethical concerns surrounding future studies based on LLM-assisted video analysis.
Abstract:Self-supervised learning (SSL), which aims to learn meaningful prior representations from unlabeled data, has been proven effective for label-efficient skeleton-based action understanding. Different from the image domain, skeleton data possesses sparser spatial structures and diverse representation forms, with the absence of background clues and the additional temporal dimension. This presents the new challenges for the pretext task design of spatial-temporal motion representation learning. Recently, many endeavors have been made for skeleton-based SSL and remarkable progress has been achieved. However, a systematic and thorough review is still lacking. In this paper, we conduct, for the first time, a comprehensive survey on self-supervised skeleton-based action representation learning, where various literature is organized according to their pre-training pretext task methodologies. Following the taxonomy of context-based, generative learning, and contrastive learning approaches, we make a thorough review and benchmark of existing works and shed light on the future possible directions. Our investigation demonstrates that most SSL works rely on the single paradigm, learning representations of a single level, and are evaluated on the action recognition task solely, which leaves the generalization power of skeleton SSL models under-explored. To this end, a novel and effective SSL method for skeleton is further proposed, which integrates multiple pretext tasks to jointly learn versatile representations of different granularity, substantially boosting the generalization capacity for different downstream tasks. Extensive experiments under three large-scale datasets demonstrate that the proposed method achieves the superior generalization performance on various downstream tasks, including recognition, retrieval, detection, and few-shot learning.
Abstract:Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.
Abstract:The images produced by diffusion models can attain excellent perceptual quality. However, it is challenging for diffusion models to guarantee distortion, hence the integration of diffusion models and image compression models still needs more comprehensive explorations. This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction, which achieves better perceptual quality while guaranteeing the distortion to an extent. We build a diffusion model and design a novel paradigm that combines the diffusion model and an end-to-end decoder, and the latter is responsible for transmitting the privileged information extracted at the encoder side. Specifically, we theoretically analyze the reconstruction process of the diffusion models at the encoder side with the original images being visible. Based on the analysis, we introduce an end-to-end convolutional decoder to provide a better approximation of the score function $\nabla_{\mathbf{x}_t}\log p(\mathbf{x}_t)$ at the encoder side and effectively transmit the combination. Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
Abstract:Understanding illumination and reducing the need for supervision pose a significant challenge in low-light enhancement. Current approaches are highly sensitive to data usage during training and illumination-specific hyper-parameters, limiting their ability to handle unseen scenarios. In this paper, we propose a new zero-reference low-light enhancement framework trainable solely with normal light images. To accomplish this, we devise an illumination-invariant prior inspired by the theory of physical light transfer. This prior serves as the bridge between normal and low-light images. Then, we develop a prior-to-image framework trained without low-light data. During testing, this framework is able to restore our illumination-invariant prior back to images, automatically achieving low-light enhancement. Within this framework, we leverage a pretrained generative diffusion model for model ability, introduce a bypass decoder to handle detail distortion, as well as offer a lightweight version for practicality. Extensive experiments demonstrate our framework's superiority in various scenarios as well as good interpretability, robustness, and efficiency. Code is available on our project homepage: http://daooshee.github.io/QuadPrior-Website/
Abstract:The presence of cloud layers severely compromises the quality and effectiveness of optical remote sensing (RS) images. However, existing deep-learning (DL)-based Cloud Removal (CR) techniques encounter difficulties in accurately reconstructing the original visual authenticity and detailed semantic content of the images. To tackle this challenge, this work proposes to encompass enhancements at the data and methodology fronts. On the data side, an ultra-resolution benchmark named CUHK Cloud Removal (CUHK-CR) of 0.5m spatial resolution is established. This benchmark incorporates rich detailed textures and diverse cloud coverage, serving as a robust foundation for designing and assessing CR models. From the methodology perspective, a novel diffusion-based framework for CR called Diffusion Enhancement (DE) is proposed to perform progressive texture detail recovery, which mitigates the training difficulty with improved inference accuracy. Additionally, a Weight Allocation (WA) network is developed to dynamically adjust the weights for feature fusion, thereby further improving performance, particularly in the context of ultra-resolution image generation. Furthermore, a coarse-to-fine training strategy is applied to effectively expedite training convergence while reducing the computational complexity required to handle ultra-resolution images. Extensive experiments on the newly established CUHK-CR and existing datasets such as RICE confirm that the proposed DE framework outperforms existing DL-based methods in terms of both perceptual quality and signal fidelity.
Abstract:Self-supervised learning has proved effective for skeleton-based human action understanding, which is an important yet challenging topic. Previous works mainly rely on contrastive learning or masked motion modeling paradigm to model the skeleton relations. However, the sequence-level and joint-level representation learning cannot be effectively and simultaneously handled by these methods. As a result, the learned representations fail to generalize to different downstream tasks. Moreover, combining these two paradigms in a naive manner leaves the synergy between them untapped and can lead to interference in training. To address these problems, we propose Prompted Contrast with Masked Motion Modeling, PCM$^{\rm 3}$, for versatile 3D action representation learning. Our method integrates the contrastive learning and masked prediction tasks in a mutually beneficial manner, which substantially boosts the generalization capacity for various downstream tasks. Specifically, masked prediction provides novel training views for contrastive learning, which in turn guides the masked prediction training with high-level semantic information. Moreover, we propose a dual-prompted multi-task pretraining strategy, which further improves model representations by reducing the interference caused by learning the two different pretext tasks. Extensive experiments on five downstream tasks under three large-scale datasets are conducted, demonstrating the superior generalization capacity of PCM$^{\rm 3}$ compared to the state-of-the-art works. Our project is publicly available at: https://jhang2020.github.io/Projects/PCM3/PCM3.html .
Abstract:Low-light conditions not only hamper human visual experience but also degrade the model's performance on downstream vision tasks. While existing works make remarkable progress on day-night domain adaptation, they rely heavily on domain knowledge derived from the task-specific nighttime dataset. This paper challenges a more complicated scenario with border applicability, i.e., zero-shot day-night domain adaptation, which eliminates reliance on any nighttime data. Unlike prior zero-shot adaptation approaches emphasizing either image-level translation or model-level adaptation, we propose a similarity min-max paradigm that considers them under a unified framework. On the image level, we darken images towards minimum feature similarity to enlarge the domain gap. Then on the model level, we maximize the feature similarity between the darkened images and their normal-light counterparts for better model adaptation. To the best of our knowledge, this work represents the pioneering effort in jointly optimizing both aspects, resulting in a significant improvement of model generalizability. Extensive experiments demonstrate our method's effectiveness and broad applicability on various nighttime vision tasks, including classification, semantic segmentation, visual place recognition, and video action recognition. Code and pre-trained models are available at https://red-fairy.github.io/ZeroShotDayNightDA-Webpage/.
Abstract:Diffusion models, as a kind of powerful generative model, have given impressive results on image super-resolution (SR) tasks. However, due to the randomness introduced in the reverse process of diffusion models, the performances of diffusion-based SR models are fluctuating at every time of sampling, especially for samplers with few resampled steps. This inherent randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results. However, our work takes this randomness as an opportunity: fully analyzing and leveraging it leads to the construction of an effective plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods. More in detail, we propose to steadily sample high-quality SR images from pretrained diffusion-based SR models by solving diffusion ordinary differential equations (diffusion ODEs) with optimal boundary conditions (BCs) and analyze the characteristics between the choices of BCs and their corresponding SR results. Our analysis shows the route to obtain an approximately optimal BC via an efficient exploration in the whole space. The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pretrained diffusion-based SR model, which means that our sampling method ``boosts'' current diffusion-based SR models without any additional training.
Abstract:We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.