Abstract:Reliable Docker-based environment construction is a dominant bottleneck for scaling execution-grounded training and evaluation of software engineering agents. We introduce DockSmith, a specialized agentic Docker builder designed to address this challenge. DockSmith treats environment construction not only as a preprocessing step, but as a core agentic capability that exercises long-horizon tool use, dependency reasoning, and failure recovery, yielding supervision that transfers beyond Docker building itself. DockSmith is trained on large-scale, execution-grounded Docker-building trajectories produced by a SWE-Factory-style pipeline augmented with a loop-detection controller and a cross-task success memory. Training a 30B-A3B model on these trajectories achieves open-source state-of-the-art performance on Multi-Docker-Eval, with 39.72% Fail-to-Pass and 58.28% Commit Rate. Moreover, DockSmith improves out-of-distribution performance on SWE-bench Verified, SWE-bench Multilingual, and Terminal-Bench 2.0, demonstrating broader agentic benefits of environment construction.
Abstract:We present STEP3-VL-10B, a lightweight open-source foundation model designed to redefine the trade-off between compact efficiency and frontier-level multimodal intelligence. STEP3-VL-10B is realized through two strategic shifts: first, a unified, fully unfrozen pre-training strategy on 1.2T multimodal tokens that integrates a language-aligned Perception Encoder with a Qwen3-8B decoder to establish intrinsic vision-language synergy; and second, a scaled post-training pipeline featuring over 1k iterations of reinforcement learning. Crucially, we implement Parallel Coordinated Reasoning (PaCoRe) to scale test-time compute, allocating resources to scalable perceptual reasoning that explores and synthesizes diverse visual hypotheses. Consequently, despite its compact 10B footprint, STEP3-VL-10B rivals or surpasses models 10$\times$-20$\times$ larger (e.g., GLM-4.6V-106B, Qwen3-VL-235B) and top-tier proprietary flagships like Gemini 2.5 Pro and Seed-1.5-VL. Delivering best-in-class performance, it records 92.2% on MMBench and 80.11% on MMMU, while excelling in complex reasoning with 94.43% on AIME2025 and 75.95% on MathVision. We release the full model suite to provide the community with a powerful, efficient, and reproducible baseline.




Abstract:Existing approaches typically rely on fixed length penalties, but such penalties are hard to tune and fail to adapt to the evolving reasoning abilities of LLMs, leading to suboptimal trade-offs between accuracy and conciseness. To address this challenge, we propose Leash (adaptive LEngth penAlty and reward SHaping), a reinforcement learning framework for efficient reasoning in LLMs. We formulate length control as a constrained optimization problem and employ a Lagrangian primal-dual method to dynamically adjust the penalty coefficient. When generations exceed the target length, the penalty is intensified; when they are shorter, it is relaxed. This adaptive mechanism guides models toward producing concise reasoning without sacrificing task performance. Experiments on Deepseek-R1-Distill-Qwen-1.5B and Qwen3-4B-Thinking-2507 show that Leash reduces the average reasoning length by 60% across diverse tasks - including in-distribution mathematical reasoning and out-of-distribution domains such as coding and instruction following - while maintaining competitive performance. Our work thus presents a practical and effective paradigm for developing controllable and efficient LLMs that balance reasoning capabilities with computational budgets.