Abstract:We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
Abstract:Medical quality control indicators are essential to assess the qualifications of healthcare institutions for medical services. With the impressive performance of large language models (LLMs) like GPT-4 in the medical field, leveraging these technologies for the Medical Quality Control Indicator Calculation (MQCIC) presents a promising approach. In this work, (1) we introduce a real-world task MQCIC and propose an open-source Chinese electronic medical records (EMRs)-based dataset (CMQCIC-Bench) comprising 785 instances and 76 indicators. (2) We propose a semi-automatic method to enhance the rule representation. Then we propose the Clinical Facts-based Inferential Rule (CF-IR) method that disentangles the clinical fact verification and inferential rule reasoning actions. (3) We conduct comprehensive experiments on 20 representative LLMs, covering general and medical models. Our findings reveal that CF-IR outperforms Chain-of-Thought methods in MQCIC tasks. (4) We conduct an error analysis and investigate the capabilities of clinical fact verification and inferential rule reasoning, providing insights to improve performance in the MQCIC further. The dataset and code is available in this repo https://anonymous.4open.science/r/C-MQCIC-1151.
Abstract:Accurate and efficient localization with conveniently-established map is the fundamental requirement for mobile robot operation in warehouse environments. An accurate AprilTag map can be conveniently established with the help of LiDAR-based SLAM. It is true that a LiDAR-based system is usually not commercially competitive in contrast with a vision-based system, yet fortunately for warehouse applications, only a single LiDAR-based SLAM system is needed to establish an accurate AprilTag map, whereas a large amount of visual localization systems can share this established AprilTag map for their own operations. Therefore, the cost of a LiDAR-based SLAM system is actually shared by the large amount of visual localization systems, and turns to be acceptable and even negligible for practical warehouse applications. Once an accurate AprilTag map is available, visual localization is realized as recursive estimation that fuses AprilTag measurements (i.e. AprilTag detection results) and robot motion data. AprilTag measurements may be nonlinear partial measurements; this can be handled by the well-known extended Kalman filter (EKF) in the spirit of local linearization. AprilTag measurements tend to have temporal correlation as well; however, this cannot be reasonably handled by the EKF. The split covariance intersection filter (Split CIF) is adopted to handle temporal correlation among AprilTag measurements. The Split CIF (in the spirit of local linearization) can also handle AprilTag nonlinear partial measurements. The Split CIF based visual localization system incorporates a measurement adaptive mechanism to handle outliers in AprilTag measurements and adopts a dynamic initialization mechanism to address the kidnapping problem. A comparative study in real warehouse environments demonstrates the potential and advantage of the Split CIF based visual localization solution.