Abstract:Advanced LLMs have achieved near-ceiling instruction-following accuracy on benchmarks such as IFEval. However, these impressive scores do not necessarily translate to reliable services in real-world use, where users often vary their phrasing, contextual framing, and task formulations. In this paper, we study nuance-oriented reliability: whether models exhibit consistent competence across cousin prompts that convey analogous user intents but with subtle nuances. To quantify this, we introduce a new metric, reliable@k, and develop an automated pipeline that generates high-quality cousin prompts via data augmentation. Building upon this, we construct IFEval++ for systematic evaluation. Across 20 proprietary and 26 open-source LLMs, we find that current models exhibit substantial insufficiency in nuance-oriented reliability -- their performance can drop by up to 61.8% with nuanced prompt modifications. What's more, we characterize it and explore three potential improvement recipes. Our findings highlight nuance-oriented reliability as a crucial yet underexplored next step toward more dependable and trustworthy LLM behavior. Our code and benchmark are accessible: https://github.com/jianshuod/IFEval-pp.




Abstract:Auto-regressive large language models (LLMs) have yielded impressive performance in many real-world tasks. However, the new paradigm of these LLMs also exposes novel threats. In this paper, we explore their vulnerability to inference cost attacks, where a malicious user crafts Engorgio prompts to intentionally increase the computation cost and latency of the inference process. We design Engorgio, a novel methodology, to efficiently generate adversarial Engorgio prompts to affect the target LLM's service availability. Engorgio has the following two technical contributions. (1) We employ a parameterized distribution to track LLMs' prediction trajectory. (2) Targeting the auto-regressive nature of LLMs' inference process, we propose novel loss functions to stably suppress the appearance of the <EOS> token, whose occurrence will interrupt the LLM's generation process. We conduct extensive experiments on 13 open-sourced LLMs with parameters ranging from 125M to 30B. The results show that Engorgio prompts can successfully induce LLMs to generate abnormally long outputs (i.e., roughly 2-13$\times$ longer to reach 90%+ of the output length limit) in a white-box scenario and our real-world experiment demonstrates Engergio's threat to LLM service with limited computing resources. The code is accessible at https://github.com/jianshuod/Engorgio-prompt.




Abstract:Deep neural networks (DNNs) are widely deployed on real-world devices. Concerns regarding their security have gained great attention from researchers. Recently, a new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques such as row hammer to attack quantized models in the deployment stage. With only a few bit flips, the target model can be rendered useless as a random guesser or even be implanted with malicious functionalities. In this work, we seek to further reduce the number of bit flips. We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release. This high-risk model, obtained coupled with a corresponding malicious model, behaves normally and can escape various detection methods. The results on benchmark datasets show that an adversary can easily convert this high-risk but normal model to a malicious one on victim's side by \textbf{flipping only one critical bit} on average in the deployment stage. Moreover, our attack still poses a significant threat even when defenses are employed. The codes for reproducing main experiments are available at \url{https://github.com/jianshuod/TBA}.