Abstract:Reusing pre-collected data from different domains is an attractive solution in decision-making tasks where the accessible data is insufficient in the target domain but relatively abundant in other related domains. Existing cross-domain policy transfer methods mostly aim at learning domain correspondences or corrections to facilitate policy learning, which requires learning domain/task-specific model components, representations, or policies that are inflexible or not fully reusable to accommodate arbitrary domains and tasks. These issues make us wonder: can we directly bridge the domain gap at the data (trajectory) level, instead of devising complicated, domain-specific policy transfer models? In this study, we propose a Cross-Domain Trajectory EDiting (xTED) framework with a new diffusion transformer model (Decision Diffusion Transformer, DDiT) that captures the trajectory distribution from the target dataset as a prior. The proposed diffusion transformer backbone captures the intricate dependencies among state, action, and reward sequences, as well as the transition dynamics within the target data trajectories. With the above pre-trained diffusion prior, source data trajectories with domain gaps can be transformed into edited trajectories that closely resemble the target data distribution through the diffusion-based editing process, which implicitly corrects the underlying domain gaps, enhancing the state realism and dynamics reliability in source trajectory data, while enabling flexible choices of downstream policy learning methods. Despite its simplicity, xTED demonstrates superior performance against other baselines in extensive simulation and real-robot experiments.
Abstract:The long-tail distribution of real driving data poses challenges for training and testing autonomous vehicles (AV), where rare yet crucial safety-critical scenarios are infrequent. And virtual simulation offers a low-cost and efficient solution. This paper proposes a near-miss focused training framework for AV. Utilizing the driving scenario information provided by sensors in the simulator, we design novel reward functions, which enable background vehicles (BV) to generate near-miss scenarios and ensure gradients exist not only in collision-free scenes but also in collision scenarios. And then leveraging the Robust Adversarial Reinforcement Learning (RARL) framework for simultaneous training of AV and BV to gradually enhance AV and BV capabilities, as well as generating near-miss scenarios tailored to different levels of AV capabilities. Results from three testing strategies indicate that the proposed method generates scenarios closer to near-miss, thus enhancing the capabilities of both AVs and BVs throughout training.
Abstract:Multi-modal object detection in autonomous driving has achieved great breakthroughs due to the usage of fusing complementary information from different sensors. The calibration in fusion between sensors such as LiDAR and camera is always supposed to be precise in previous work. However, in reality, calibration matrices are fixed when the vehicles leave the factory, but vibration, bumps, and data lags may cause calibration bias. As the research on the calibration influence on fusion detection performance is relatively few, flexible calibration dependency multi-sensor detection method has always been attractive. In this paper, we conducted experiments on SOTA detection method EPNet++ and proved slight bias on calibration can reduce the performance seriously. We also proposed a re-calibration model based on semantic segmentation which can be combined with a detection algorithm to improve the performance and robustness of multi-modal calibration bias.
Abstract:The assessment of safety performance plays a pivotal role in the development and deployment of connected and automated vehicles (CAVs). A common approach involves designing testing scenarios based on prior knowledge of CAVs (e.g., surrogate models), conducting tests in these scenarios, and subsequently evaluating CAVs' safety performances. However, substantial differences between CAVs and the prior knowledge can significantly diminish the evaluation efficiency. In response to this issue, existing studies predominantly concentrate on the adaptive design of testing scenarios during the CAV testing process. Yet, these methods have limitations in their applicability to high-dimensional scenarios. To overcome this challenge, we develop an adaptive testing environment that bolsters evaluation robustness by incorporating multiple surrogate models and optimizing the combination coefficients of these surrogate models to enhance evaluation efficiency. We formulate the optimization problem as a regression task utilizing quadratic programming. To efficiently obtain the regression target via reinforcement learning, we propose the dense reinforcement learning method and devise a new adaptive policy with high sample efficiency. Essentially, our approach centers on learning the values of critical scenes displaying substantial surrogate-to-real gaps. The effectiveness of our method is validated in high-dimensional overtaking scenarios, demonstrating that our approach achieves notable evaluation efficiency.
Abstract:The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.
Abstract:Testing and evaluating the safety performance of autonomous vehicles (AVs) is essential before the large-scale deployment. Practically, the acceptable cost of testing specific AV model can be restricted within an extremely small limit because of testing cost or time. With existing testing methods, the limitations imposed by strictly restricted testing numbers often result in significant uncertainties or challenges in quantifying testing results. In this paper, we formulate this problem for the first time the "few-shot testing" (FST) problem and propose a systematic FST framework to address this challenge. To alleviate the considerable uncertainty inherent in a small testing scenario set and optimize scenario utilization, we frame the FST problem as an optimization problem and search for a small scenario set based on neighborhood coverage and similarity. By leveraging the prior information on surrogate models (SMs), we dynamically adjust the testing scenario set and the contribution of each scenario to the testing result under the guidance of better generalization ability on AVs. With certain hypotheses on SMs, a theoretical upper bound of testing error is established to verify the sufficiency of testing accuracy within given limited number of tests. The experiments of the cut-in scenario using FST method demonstrate a notable reduction in testing error and variance compared to conventional testing methods, especially for situations with a strict limitation on the number of scenarios.
Abstract:Video prediction, a fundamental task in computer vision, aims to enable models to generate sequences of future frames based on existing video content. This task has garnered widespread application across various domains. In this paper, we comprehensively survey both historical and contemporary works in this field, encompassing the most widely used datasets and algorithms. Our survey scrutinizes the challenges and evolving landscape of video prediction within the realm of computer vision. We propose a novel taxonomy centered on the stochastic nature of video prediction algorithms. This taxonomy accentuates the gradual transition from deterministic to generative prediction methodologies, underlining significant advancements and shifts in approach.
Abstract:The deployment of autonomous vehicles (AVs) has faced hurdles due to the dominance of rare but critical corner cases within the long-tail distribution of driving scenarios, which negatively affects their overall performance. To address this challenge, adversarial generation methods have emerged as a class of efficient approaches to synthesize safety-critical scenarios for AV testing. However, these generated scenarios are often underutilized for AV training, resulting in the potential for continual AV policy improvement remaining untapped, along with a deficiency in the closed-loop design needed to achieve it. Therefore, we tailor the Stackelberg Driver Model (SDM) to accurately characterize the hierarchical nature of vehicle interaction dynamics, facilitating iterative improvement by engaging background vehicles (BVs) and AV in a sequential game-like interaction paradigm. With AV acting as the leader and BVs as followers, this leader-follower modeling ensures that AV would consistently refine its policy, always taking into account the additional information that BVs play the best response to challenge AV. Extensive experiments have shown that our algorithm exhibits superior performance compared to several baselines especially in higher dimensional scenarios, leading to substantial advancements in AV capabilities while continually generating progressively challenging scenarios.
Abstract:The safety of autonomous vehicles (AV) has been a long-standing top concern, stemming from the absence of rare and safety-critical scenarios in the long-tail naturalistic driving distribution. To tackle this challenge, a surge of research in scenario-based autonomous driving has emerged, with a focus on generating high-risk driving scenarios and applying them to conduct safety-critical testing of AV models. However, limited work has been explored on the reuse of these extensive scenarios to iteratively improve AV models. Moreover, it remains intractable and challenging to filter through gigantic scenario libraries collected from other AV models with distinct behaviors, attempting to extract transferable information for current AV improvement. Therefore, we develop a continual driving policy optimization framework featuring Closed-Loop Individualized Curricula (CLIC), which we factorize into a set of standardized sub-modules for flexible implementation choices: AV Evaluation, Scenario Selection, and AV Training. CLIC frames AV Evaluation as a collision prediction task, where it estimates the chance of AV failures in these scenarios at each iteration. Subsequently, by re-sampling from historical scenarios based on these failure probabilities, CLIC tailors individualized curricula for downstream training, aligning them with the evaluated capability of AV. Accordingly, CLIC not only maximizes the utilization of the vast pre-collected scenario library for closed-loop driving policy optimization but also facilitates AV improvement by individualizing its training with more challenging cases out of those poorly organized scenarios. Experimental results clearly indicate that CLIC surpasses other curriculum-based training strategies, showing substantial improvement in managing risky scenarios, while still maintaining proficiency in handling simpler cases.
Abstract:Solving real-world complex tasks using reinforcement learning (RL) without high-fidelity simulation environments or large amounts of offline data can be quite challenging. Online RL agents trained in imperfect simulation environments can suffer from severe sim-to-real issues. Offline RL approaches although bypass the need for simulators, often pose demanding requirements on the size and quality of the offline datasets. The recently emerged hybrid offline-and-online RL provides an attractive framework that enables joint use of limited offline data and imperfect simulator for transferable policy learning. In this paper, we develop a new algorithm, called H2O+, which offers great flexibility to bridge various choices of offline and online learning methods, while also accounting for dynamics gaps between the real and simulation environment. Through extensive simulation and real-world robotics experiments, we demonstrate superior performance and flexibility over advanced cross-domain online and offline RL algorithms.