Abstract:Spoken languages show significant variation across mandarin and accent. Despite the high performance of mandarin automatic speech recognition (ASR), accent ASR is still a challenge task. In this paper, we introduce meta-learning techniques for fast accent domain expansion in mandarin speech recognition, which expands the field of accents without deteriorating the performance of mandarin ASR. Meta-learning or learn-to-learn can learn general relation in multi domains not only for over-fitting a specific domain. So we select meta-learning in the domain expansion task. This more essential learning will cause improved performance on accent domain extension tasks. We combine the methods of meta learning and freeze of model parameters, which makes the recognition performance more stable in different cases and the training faster about 20%. Our approach significantly outperforms other methods about 3% relatively in the accent domain expansion task. Compared to the baseline model, it improves relatively 37% under the condition that the mandarin test set remains unchanged. In addition, it also proved this method to be effective on a large amount of data with a relative performance improvement of 4% on the accent test set.
Abstract:Spectral image reconstruction is an important task in snapshot compressed imaging. This paper aims to propose a new end-to-end framework with iterative capabilities similar to a deep unfolding network to improve reconstruction accuracy, independent of optimization conditions, and to reduce the number of parameters. A novel framework called the reversible-prior-based method is proposed. Inspired by the reversibility of the optical path, the reversible-prior-based framework projects the reconstructions back into the measurement space, and then the residuals between the projected data and the real measurements are fed into the network for iteration. The reconstruction subnet in the network then learns the mapping of the residuals to the true values to improve reconstruction accuracy. In addition, a novel spectral-spatial transformer is proposed to account for the global correlation of spectral data in both spatial and spectral dimensions while balancing network depth and computational complexity, in response to the shortcomings of existing transformer-based denoising modules that ignore spatial texture features or learn local spatial features at the expense of global spatial features. Extensive experiments show that our SST-ReversibleNet significantly outperforms state-of-the-art methods on simulated and real HSI datasets, while requiring lower computational and storage costs. https://github.com/caizeyu1992/SST
Abstract:Unsupervised domain adaptation(UDA) has been applied to image semantic segmentation to solve the problem of domain offset. However, in some difficult categories with poor recognition accuracy, the segmentation effects are still not ideal. To this end, in this paper, Intra-subdomain adaptation adversarial learning segmentation method based on Dynamic Pseudo Labels(IDPL) is proposed. The whole process consists of 3 steps: Firstly, the instance-level pseudo label dynamic generation module is proposed, which fuses the class matching information in global classes and local instances, thus adaptively generating the optimal threshold for each class, obtaining high-quality pseudo labels. Secondly, the subdomain classifier module based on instance confidence is constructed, which can dynamically divide the target domain into easy and difficult subdomains according to the relative proportion of easy and difficult instances. Finally, the subdomain adversarial learning module based on self-attention is proposed. It uses multi-head self-attention to confront the easy and difficult subdomains at the class level with the help of generated high-quality pseudo labels, so as to focus on mining the features of difficult categories in the high-entropy region of target domain images, which promotes class-level conditional distribution alignment between the subdomains, improving the segmentation performance of difficult categories. For the difficult categories, the experimental results show that the performance of IDPL is significantly improved compared with other latest mainstream methods.
Abstract:Conformer models have achieved state-of-the-art(SOTA) results in end-to-end speech recognition. However Conformer mainly focuses on temporal modeling while pays less attention on time-frequency property of speech feature. In this paper we augment Conformer with ConvNeXt and propose Nextformer structure. We use stacks of ConvNeXt block to replace the commonly used subsampling module in Conformer for utilizing the information contained in time-frequency speech feature. Besides, we insert an additional downsampling module in middle of Conformer layers to make our model more efficient and accurate. We conduct experiments on two opening datasets, AISHELL-1 and WenetSpeech. On AISHELL-1, compared to Conformer baselines, Nextformer obtains 7.3% and 6.3% relative CER reduction in non-streaming and streaming mode respectively, and on a much larger WenetSpeech dataset, Nextformer gives 5.0%~6.5% and 7.5%~14.6% relative CER reduction in non-streaming and streaming mode, while keep the computational cost FLOPs comparable to Conformer. To the best of our knowledge, the proposed Nextformer model achieves SOTA results on AISHELL-1(CER 4.06%) and WenetSpeech(CER 7.56%/11.29%).
Abstract:Many complex systems in the real world can be characterized by attributed networks. To mine the potential information in these networks, deep embedded clustering, which obtains node representations and clusters simultaneously, has been paid much attention in recent years. Under the assumption of consistency for data in different views, the cluster structure of network topology and that of node attributes should be consistent for an attributed network. However, many existing methods ignore this property, even though they separately encode node representations from network topology and node attributes meanwhile clustering nodes on representation vectors learnt from one of the views. Therefore, in this study, we propose an end-to-end deep embedded clustering model for attributed networks. It utilizes graph autoencoder and node attribute autoencoder to respectively learn node representations and cluster assignments. In addition, a distribution consistency constraint is introduced to maintain the latent consistency of cluster distributions of two views. Extensive experiments on several datasets demonstrate that the proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods. The source code can be found at https://github.com/Zhengymm/DCP.
Abstract:Synthesizing pseudo samples is currently the most effective way to solve the Generalized Zero Shot Learning (GZSL) problem. Most models achieve competitive performance but still suffer from two problems: (1) Feature confounding, the overall representations confound task-correlated and task-independent features, and existing models disentangle them in a generative way, but they are unreasonable to synthesize reliable pseudo samples with limited samples; (2) Distribution uncertainty, that massive data is needed when existing models synthesize samples from the uncertain distribution, which causes poor performance in limited samples of seen classes. In this paper, we propose a non-generative model to address these problems correspondingly in two modules: (1) Task-correlated feature disentanglement, to exclude the task-correlated features from task-independent ones by adversarial learning of domain adaption towards reasonable synthesis; (2) Controllable pseudo sample synthesis, to synthesize edge-pseudo and center-pseudo samples with certain characteristics towards more diversity generated and intuitive transfer. In addation, to describe the new scene that is the limit seen class samples in the training process, we further formulate a new ZSL task named the 'Few-shot Seen class and Zero-shot Unseen class learning' (FSZU). Extensive experiments on four benchmarks verify that the proposed method is competitive in the GZSL and the FSZU tasks.
Abstract:The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algorithms, such as the widely used matrix factorization, underperform because of data sparseness. This work adopts the idea of meta-learning to solve the user's cold-start recommendation problem. We propose a meta-learning based cold-start sequential recommendation framework called metaCSR, including three main components: Diffusion Representer for learning better user/item embedding through information diffusion on the interaction graph; Sequential Recommender for capturing temporal dependencies of behavior sequences; Meta Learner for extracting and propagating transferable knowledge of prior users and learning a good initialization for new users. metaCSR holds the ability to learn the common patterns from regular users' behaviors and optimize the initialization so that the model can quickly adapt to new users after one or a few gradient updates to achieve optimal performance. The extensive quantitative experiments on three widely-used datasets show the remarkable performance of metaCSR in dealing with user cold-start problem. Meanwhile, a series of qualitative analysis demonstrates that the proposed metaCSR has good generalization.
Abstract:The traditional recommendation systems mainly use offline user data to train offline models, and then recommend items for online users, thus suffering from the unreliable estimation of user preferences based on sparse and noisy historical data. Conversational Recommendation System (CRS) uses the interactive form of the dialogue systems to solve the intrinsic problems of traditional recommendation systems. However, due to the lack of contextual information modeling, the existing CRS models are unable to deal with the exploitation and exploration (E&E) problem well, resulting in the heavy burden on users. To address the aforementioned issue, this work proposes a contextual information enhancement model tailored for CRS, called Knowledge Graph-enhanced Sampling (KGenSam). KGenSam integrates the dynamic graph of user interaction data with the external knowledge into one heterogeneous Knowledge Graph (KG) as the contextual information environment. Then, two samplers are designed to enhance knowledge by sampling fuzzy samples with high uncertainty for obtaining user preferences and reliable negative samples for updating recommender to achieve efficient acquisition of user preferences and model updating, and thus provide a powerful solution for CRS to deal with E&E problem. Experimental results on two real-world datasets demonstrate the superiority of KGenSam with significant improvements over state-of-the-art methods.
Abstract:Visible-infrared person re-identification (VI Re-ID) aims to match person images between the visible and infrared modalities. Existing VI Re-ID methods mainly focus on extracting homogeneous structural relationships from a single image, while ignoring the heterogeneous correlation between cross-modality images. The homogenous and heterogeneous structured relationships are crucial to learning effective identity representation and cross-modality matching. In this paper, we separately model the homogenous structural relationship by a modality-specific graph within individual modality and then mine the heterogeneous structural correlation in these two modality-specific graphs. First, the homogeneous structured graph (HOSG) mines one-vs.-rest relation between an arbitrary node (local feature) and all the rest nodes within a visible or infrared image to learn effective identity representation. Second, to find cross-modality identity-consistent correspondence, the heterogeneous graph alignment module (HGAM) further measures the relational edge strength by route search between two-modality local node features. Third, we propose the cross-modality cross-correlation (CMCC) loss to extract the modality invariance in heterogeneous global graph representation. CMCC computes the mutual information between modalities and expels semantic redundancy. Extensive experiments on SYSU-MM01 and RegDB datasets demonstrate that our method outperforms state-of-the-arts with a gain of 13.73\% and 9.45\% Rank1/mAP. The code is available at https://github.com/fegnyujian/Homogeneous-and-Heterogeneous-Relational-Graph.
Abstract:Pre-training has enabled many state-of-the-art results on many tasks. In spite of its recognized contribution to generalization, we observed in this study that pre-training also transfers the non-robustness from pre-trained model into the fine-tuned model. Using image classification as an example, we first conducted experiments on various datasets and network backbones to explore the factors influencing robustness. Further analysis is conducted on examining the difference between the fine-tuned model and standard model to uncover the reason leading to the non-robustness transfer. Finally, we introduce a simple robust pre-training solution by regularizing the difference between target and source tasks. Results validate the effectiveness in alleviating non-robustness and preserving generalization.