Alert button
Picture for Jane Dwivedi-Yu

Jane Dwivedi-Yu

Alert button

ROBBIE: Robust Bias Evaluation of Large Generative Language Models

Nov 29, 2023
David Esiobu, Xiaoqing Tan, Saghar Hosseini, Megan Ung, Yuchen Zhang, Jude Fernandes, Jane Dwivedi-Yu, Eleonora Presani, Adina Williams, Eric Michael Smith

As generative large language models (LLMs) grow more performant and prevalent, we must develop comprehensive enough tools to measure and improve their fairness. Different prompt-based datasets can be used to measure social bias across multiple text domains and demographic axes, meaning that testing LLMs on more datasets can potentially help us characterize their biases more fully, and better ensure equal and equitable treatment of marginalized demographic groups. In this work, our focus is two-fold: (1) Benchmarking: a comparison of 6 different prompt-based bias and toxicity metrics across 12 demographic axes and 5 families of generative LLMs. Out of those 6 metrics, AdvPromptSet and HolisticBiasR are novel datasets proposed in the paper. The comparison of those benchmarks gives us insights about the bias and toxicity of the compared models. Therefore, we explore the frequency of demographic terms in common LLM pre-training corpora and how this may relate to model biases. (2) Mitigation: we conduct a comprehensive study of how well 3 bias/toxicity mitigation techniques perform across our suite of measurements. ROBBIE aims to provide insights for practitioners while deploying a model, emphasizing the need to not only measure potential harms, but also understand how they arise by characterizing the data, mitigate harms once found, and balance any trade-offs. We open-source our analysis code in hopes of encouraging broader measurements of bias in future LLMs.

* EMNLP 2023 
Viaarxiv icon

Evaluation of Faithfulness Using the Longest Supported Subsequence

Aug 23, 2023
Anirudh Mittal, Timo Schick, Mikel Artetxe, Jane Dwivedi-Yu

As increasingly sophisticated language models emerge, their trustworthiness becomes a pivotal issue, especially in tasks such as summarization and question-answering. Ensuring their responses are contextually grounded and faithful is challenging due to the linguistic diversity and the myriad of possible answers. In this paper, we introduce a novel approach to evaluate faithfulness of machine-generated text by computing the longest noncontinuous substring of the claim that is supported by the context, which we refer to as the Longest Supported Subsequence (LSS). Using a new human-annotated dataset, we finetune a model to generate LSS. We introduce a new method of evaluation and demonstrate that these metrics correlate better with human ratings when LSS is employed, as opposed to when it is not. Our proposed metric demonstrates an 18% enhancement over the prevailing state-of-the-art metric for faithfulness on our dataset. Our metric consistently outperforms other metrics on a summarization dataset across six different models. Finally, we compare several popular Large Language Models (LLMs) for faithfulness using this metric. We release the human-annotated dataset built for predicting LSS and our fine-tuned model for evaluating faithfulness.

Viaarxiv icon

Shepherd: A Critic for Language Model Generation

Aug 08, 2023
Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean O'Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu, Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-Zarandi, Asli Celikyilmaz

Figure 1 for Shepherd: A Critic for Language Model Generation
Figure 2 for Shepherd: A Critic for Language Model Generation
Figure 3 for Shepherd: A Critic for Language Model Generation
Figure 4 for Shepherd: A Critic for Language Model Generation

As large language models improve, there is increasing interest in techniques that leverage these models' capabilities to refine their own outputs. In this work, we introduce Shepherd, a language model specifically tuned to critique responses and suggest refinements, extending beyond the capabilities of an untuned model to identify diverse errors and provide suggestions to remedy them. At the core of our approach is a high quality feedback dataset, which we curate from community feedback and human annotations. Even though Shepherd is small (7B parameters), its critiques are either equivalent or preferred to those from established models including ChatGPT. Using GPT-4 for evaluation, Shepherd reaches an average win-rate of 53-87% compared to competitive alternatives. In human evaluation, Shepherd strictly outperforms other models and on average closely ties with ChatGPT.

* 7 figures, 7 tables 
Viaarxiv icon

TimelineQA: A Benchmark for Question Answering over Timelines

Jun 01, 2023
Wang-Chiew Tan, Jane Dwivedi-Yu, Yuliang Li, Lambert Mathias, Marzieh Saeidi, Jing Nathan Yan, Alon Y. Halevy

Figure 1 for TimelineQA: A Benchmark for Question Answering over Timelines
Figure 2 for TimelineQA: A Benchmark for Question Answering over Timelines
Figure 3 for TimelineQA: A Benchmark for Question Answering over Timelines
Figure 4 for TimelineQA: A Benchmark for Question Answering over Timelines

Lifelogs are descriptions of experiences that a person had during their life. Lifelogs are created by fusing data from the multitude of digital services, such as online photos, maps, shopping and content streaming services. Question answering over lifelogs can offer personal assistants a critical resource when they try to provide advice in context. However, obtaining answers to questions over lifelogs is beyond the current state of the art of question answering techniques for a variety of reasons, the most pronounced of which is that lifelogs combine free text with some degree of structure such as temporal and geographical information. We create and publicly release TimelineQA1, a benchmark for accelerating progress on querying lifelogs. TimelineQA generates lifelogs of imaginary people. The episodes in the lifelog range from major life episodes such as high school graduation to those that occur on a daily basis such as going for a run. We describe a set of experiments on TimelineQA with several state-of-the-art QA models. Our experiments reveal that for atomic queries, an extractive QA system significantly out-performs a state-of-the-art retrieval-augmented QA system. For multi-hop queries involving aggregates, we show that the best result is obtained with a state-of-the-art table QA technique, assuming the ground truth set of episodes for deriving the answer is available.

Viaarxiv icon

NormBank: A Knowledge Bank of Situational Social Norms

May 26, 2023
Caleb Ziems, Jane Dwivedi-Yu, Yi-Chia Wang, Alon Halevy, Diyi Yang

Figure 1 for NormBank: A Knowledge Bank of Situational Social Norms
Figure 2 for NormBank: A Knowledge Bank of Situational Social Norms
Figure 3 for NormBank: A Knowledge Bank of Situational Social Norms
Figure 4 for NormBank: A Knowledge Bank of Situational Social Norms

We present NormBank, a knowledge bank of 155k situational norms. This resource is designed to ground flexible normative reasoning for interactive, assistive, and collaborative AI systems. Unlike prior commonsense resources, NormBank grounds each inference within a multivalent sociocultural frame, which includes the setting (e.g., restaurant), the agents' contingent roles (waiter, customer), their attributes (age, gender), and other physical, social, and cultural constraints (e.g., the temperature or the country of operation). In total, NormBank contains 63k unique constraints from a taxonomy that we introduce and iteratively refine here. Constraints then apply in different combinations to frame social norms. Under these manipulations, norms are non-monotonic - one can cancel an inference by updating its frame even slightly. Still, we find evidence that neural models can help reliably extend the scope and coverage of NormBank. We further demonstrate the utility of this resource with a series of transfer experiments.

Viaarxiv icon

Active Learning Principles for In-Context Learning with Large Language Models

May 23, 2023
Katerina Margatina, Timo Schick, Nikolaos Aletras, Jane Dwivedi-Yu

Figure 1 for Active Learning Principles for In-Context Learning with Large Language Models
Figure 2 for Active Learning Principles for In-Context Learning with Large Language Models
Figure 3 for Active Learning Principles for In-Context Learning with Large Language Models
Figure 4 for Active Learning Principles for In-Context Learning with Large Language Models

The remarkable advancements in large language models (LLMs) have significantly enhanced the performance in few-shot learning settings. By using only a small number of labeled examples, referred to as demonstrations, LLMs can effectively grasp the task at hand through in-context learning. However, the process of selecting appropriate demonstrations has received limited attention in prior work. This paper addresses the issue of identifying the most informative demonstrations for few-shot learning by approaching it as a pool-based Active Learning (AL) problem over a single iteration. Our objective is to investigate how AL algorithms can serve as effective demonstration selection methods for in-context learning. We compare various standard AL algorithms based on uncertainty, diversity, and similarity, and consistently observe that the latter outperforms all other methods, including random sampling. Notably, uncertainty sampling, despite its success in conventional supervised learning scenarios, performs poorly in this context. Our extensive experimentation involving a diverse range of GPT and OPT models across $24$ classification and multi-choice tasks, coupled with thorough analysis, unambiguously demonstrates that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.

Viaarxiv icon

Active Retrieval Augmented Generation

May 11, 2023
Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, Graham Neubig

Figure 1 for Active Retrieval Augmented Generation
Figure 2 for Active Retrieval Augmented Generation
Figure 3 for Active Retrieval Augmented Generation
Figure 4 for Active Retrieval Augmented Generation

Despite the remarkable ability of large language models (LMs) to comprehend and generate language, they have a tendency to hallucinate and create factually inaccurate output. Augmenting LMs by retrieving information from external knowledge resources is one promising solution. Most existing retrieval-augmented LMs employ a retrieve-and-generate setup that only retrieves information once based on the input. This is limiting, however, in more general scenarios involving generation of long texts, where continually gathering information throughout the generation process is essential. There have been some past efforts to retrieve information multiple times while generating outputs, which mostly retrieve documents at fixed intervals using the previous context as queries. In this work, we provide a generalized view of active retrieval augmented generation, methods that actively decide when and what to retrieve across the course of the generation. We propose Forward-Looking Active REtrieval augmented generation (FLARE), a generic retrieval-augmented generation method which iteratively uses a prediction of the upcoming sentence to anticipate future content, which is then utilized as a query to retrieve relevant documents to regenerate the sentence if it contains low-confidence tokens. We test FLARE along with baselines comprehensively over 4 long-form knowledge-intensive generation tasks/datasets. FLARE achieves superior or competitive performance on all tasks, demonstrating the effectiveness of our method. Code and datasets are available at

Viaarxiv icon

Learnings from Data Integration for Augmented Language Models

Apr 10, 2023
Alon Halevy, Jane Dwivedi-Yu

One of the limitations of large language models is that they do not have access to up-to-date, proprietary or personal data. As a result, there are multiple efforts to extend language models with techniques for accessing external data. In that sense, LLMs share the vision of data integration systems whose goal is to provide seamless access to a large collection of heterogeneous data sources. While the details and the techniques of LLMs differ greatly from those of data integration, this paper shows that some of the lessons learned from research on data integration can elucidate the research path we are conducting today on language models.

Viaarxiv icon

Augmented Language Models: a Survey

Feb 15, 2023
Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann LeCun, Thomas Scialom

Figure 1 for Augmented Language Models: a Survey
Figure 2 for Augmented Language Models: a Survey
Figure 3 for Augmented Language Models: a Survey
Figure 4 for Augmented Language Models: a Survey

This survey reviews works in which language models (LMs) are augmented with reasoning skills and the ability to use tools. The former is defined as decomposing a potentially complex task into simpler subtasks while the latter consists in calling external modules such as a code interpreter. LMs can leverage these augmentations separately or in combination via heuristics, or learn to do so from demonstrations. While adhering to a standard missing tokens prediction objective, such augmented LMs can use various, possibly non-parametric external modules to expand their context processing ability, thus departing from the pure language modeling paradigm. We therefore refer to them as Augmented Language Models (ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even act, while still performing standard natural language tasks and even outperforming most regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs, we conclude that this new research direction has the potential to address common limitations of traditional LMs such as interpretability, consistency, and scalability issues.

Viaarxiv icon

Toolformer: Language Models Can Teach Themselves to Use Tools

Feb 09, 2023
Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, Thomas Scialom

Figure 1 for Toolformer: Language Models Can Teach Themselves to Use Tools
Figure 2 for Toolformer: Language Models Can Teach Themselves to Use Tools
Figure 3 for Toolformer: Language Models Can Teach Themselves to Use Tools
Figure 4 for Toolformer: Language Models Can Teach Themselves to Use Tools

Language models (LMs) exhibit remarkable abilities to solve new tasks from just a few examples or textual instructions, especially at scale. They also, paradoxically, struggle with basic functionality, such as arithmetic or factual lookup, where much simpler and smaller models excel. In this paper, we show that LMs can teach themselves to use external tools via simple APIs and achieve the best of both worlds. We introduce Toolformer, a model trained to decide which APIs to call, when to call them, what arguments to pass, and how to best incorporate the results into future token prediction. This is done in a self-supervised way, requiring nothing more than a handful of demonstrations for each API. We incorporate a range of tools, including a calculator, a Q\&A system, two different search engines, a translation system, and a calendar. Toolformer achieves substantially improved zero-shot performance across a variety of downstream tasks, often competitive with much larger models, without sacrificing its core language modeling abilities.

Viaarxiv icon