Abstract:In this work, we tackle the problem of robust computed tomography (CT) reconstruction issue under a cross-domain scenario, i.e., the training CT data as the source domain and the testing CT data as the target domain are collected from different anatomical regions. Due to the mismatches of the scan region and corresponding scan protocols, there is usually a difference of noise distributions between source and target domains (a.k.a. noise distribution shifts), resulting in a catastrophic deterioration of the reconstruction performance on target domain. To render a robust cross-domain CT reconstruction performance, instead of using deterministic models (e.g., convolutional neural network), a Bayesian-endowed probabilistic framework is introduced into robust cross-domain CT reconstruction task due to its impressive robustness. Under this probabilistic framework, we propose to alleviate the noise distribution shifts between source and target domains via implicit noise modeling schemes in the latent space and image space, respectively. Specifically, a novel Bayesian noise uncertainty alignment (BNUA) method is proposed to conduct implicit noise distribution modeling and alignment in the latent space. Moreover, an adversarial learning manner is imposed to reduce the discrepancy of noise distribution between two domains in the image space via a novel residual distribution alignment (RDA). Extensive experiments on the head and abdomen scans show that our proposed method can achieve a better performance of robust cross-domain CT reconstruction than existing approaches in terms of both quantitative and qualitative results.
Abstract:This paper focuses on representation learning for dynamic graphs with temporal interactions. A fundamental issue is that both the graph structure and the nodes own their own dynamics, and their blending induces intractable complexity in the temporal evolution over graphs. Drawing inspiration from the recent process of physical dynamic models in deep neural networks, we propose Graph Neural Controlled Differential Equation (GN-CDE) model, a generic differential model for dynamic graphs that characterise the continuously dynamic evolution of node embedding trajectories with a neural network parameterised vector field and the derivatives of interactions w.r.t. time. Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without integration by segments, the capability to calibrate trajectories with subsequent data, and robustness to missing observations. Empirical evaluation on a range of dynamic graph representation learning tasks demonstrates the superiority of our proposed approach compared to the baselines.
Abstract:Convolutional neural networks (CNNs) are usually used as a backbone to design methods in biomedical image segmentation. However, the limitation of receptive field and large number of parameters limit the performance of these methods. In this paper, we propose a graph neural network (GNN) based method named GNN-SEG for the segmentation of brain tissues. Different to conventional CNN based methods, GNN-SEG takes superpixels as basic processing units and uses GNNs to learn the structure of brain tissues. Besides, inspired by the interaction mechanism in biological vision systems, we propose two kinds of interaction modules for feature enhancement and integration. In the experiments, we compared GNN-SEG with state-of-the-art CNN based methods on four datasets of brain magnetic resonance images. The experimental results show the superiority of GNN-SEG.
Abstract:The hand-eye calibration problem is an important application problem in robot research. Based on the 2-norm of dual quaternion vectors, we propose a new dual quaternion optimization method for the hand-eye calibration problem. The dual quaternion optimization problem is decomposed to two quaternion optimization subproblems. The first quaternion optimization subproblem governs the rotation of the robot hand. It can be solved efficiently by the eigenvalue decomposition or singular value decomposition. If the optimal value of the first quaternion optimization subproblem is zero, then the system is rotationwise noiseless, i.e., there exists a ``perfect'' robot hand motion which meets all the testing poses rotationwise exactly. In this case, we apply the regularization technique for solving the second subproblem to minimize the distance of the translation. Otherwise we apply the patching technique to solve the second quaternion optimization subproblem. Then solving the second quaternion optimization subproblem turns out to be solving a quadratically constrained quadratic program. In this way, we give a complete description for the solution set of hand-eye calibration problems. This is new in the hand-eye calibration literature. The numerical results are also presented to show the efficiency of the proposed method.
Abstract:Distinguishing between computer-generated (CG) and natural photographic (PG) images is of great importance to verify the authenticity and originality of digital images. However, the recent cutting-edge generation methods enable high qualities of synthesis in CG images, which makes this challenging task even trickier. To address this issue, a joint learning strategy with deep texture and high-frequency features for CG image detection is proposed. We first formulate and deeply analyze the different acquisition processes of CG and PG images. Based on the finding that multiple different modules in image acquisition will lead to different sensitivity inconsistencies to the convolutional neural network (CNN)-based rendering in images, we propose a deep texture rendering module for texture difference enhancement and discriminative texture representation. Specifically, the semantic segmentation map is generated to guide the affine transformation operation, which is used to recover the texture in different regions of the input image. Then, the combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms, which refines intermediate features and facilitates trace exploration in spatial and channel dimensions respectively. Extensive experiments on two public datasets and a newly constructed dataset with more realistic and diverse images show that the proposed approach outperforms existing methods in the field by a clear margin. Besides, results also demonstrate the detection robustness and generalization ability of the proposed approach to postprocessing operations and generative adversarial network (GAN) generated images.
Abstract:Spatial-temporal representation learning is ubiquitous in various real-world applications, including visual comprehension, video understanding, multi-modal analysis, human-computer interaction, and urban computing. Due to the emergence of huge amounts of multi-modal heterogeneous spatial/temporal/spatial-temporal data in big data era, the lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models. The majority of the existing methods tend to fit the original data/variable distributions and ignore the essential causal relations behind the multi-modal knowledge, which lacks an unified guidance and analysis about why modern spatial-temporal representation learning methods are easily collapse into data bias and have limited generalization and cognitive abilities. Inspired by the strong inference ability of human-level agents, recent years have therefore witnessed great effort in developing causal reasoning paradigms to realize robust representation and model learning with good cognitive ability. In this paper, we conduct a comprehensive review of existing causal reasoning methods for spatial-temporal representation learning, covering fundamental theories, models, and datasets. The limitations of current methods and datasets are also discussed. Moreover, we propose some primary challenges, opportunities, and future research directions for benchmarking causal reasoning algorithms in spatial-temporal representation learning. This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods, publicly available benchmarks, and consensus-building standards for reliable spatial-temporal representation learning and related real-world applications more efficiently.
Abstract:In this work we investigate the use of the Signature Transform in the context of Learning. Under this assumption, we advance a supervised framework that provides state-of-the-art classification accuracy with the use of very few labels without the need of credit assignment and with minimal or no overfitting. We leverage tools from harmonic analysis by the use of the signature and log-signature, and use as a score function RMSE and MAE Signature and log-signature. We develop a closed-form equation to compute probably good optimal scale factors. Classification is performed at the CPU level orders of magnitude faster than other methods. We report results on AFHQ, MNIST and CIFAR10 achieving 100% accuracy on all tasks assuming we can determine at test time which probably good optimal scale factor to use for each category.
Abstract:In this paper, we develop a new and systematic method to explore and analyze samples taken by NASA Perseverance on the surface of the planet Mars. A novel in this context PCA adaptive t-SNE is proposed, as well as the introduction of statistical measures to study the goodness of fit of the sample distribution. We go beyond visualization by generating synthetic imagery using Stylegan2-ADA that resemble the original terrain distribution. We also conduct synthetic image generation using the recently introduced Scored-based Generative Modeling. We bring forward the use of the recently developed Signature Transform as a way to measure the similarity between image distributions and provide detailed acquaintance and extensive evaluations. We are the first to pioneer RMSE and MAE Signature and log-signature as an alternative to measure GAN convergence. Insights on state-of-the-art instance segmentation of the samples by the use of a model DeepLabv3 are also given.
Abstract:Recently, deep hashing with Hamming distance metric has drawn increasing attention for face image retrieval tasks. However, its counterpart deep quantization methods, which learn binary code representations with dictionary-related distance metrics, have seldom been explored for the task. This paper makes the first attempt to integrate product quantization into an end-to-end deep learning framework for face image retrieval. Unlike prior deep quantization methods where the codewords for quantization are learned from data, we propose a novel scheme using predefined orthonormal vectors as codewords, which aims to enhance the quantization informativeness and reduce the codewords' redundancy. To make the most of the discriminative information, we design a tailored loss function that maximizes the identity discriminability in each quantization subspace for both the quantized and the original features. Furthermore, an entropy-based regularization term is imposed to reduce the quantization error. We conduct experiments on three commonly-used datasets under the settings of both single-domain and cross-domain retrieval. It shows that the proposed method outperforms all the compared deep hashing/quantization methods under both settings with significant superiority. The proposed codewords scheme consistently improves both regular model performance and model generalization ability, verifying the importance of codewords' distribution for the quantization quality. Besides, our model's better generalization ability than deep hashing models indicates that it is more suitable for scalable face image retrieval tasks.
Abstract:Semantic and instance segmentation algorithms are two general yet distinct image segmentation solutions powered by Convolution Neural Network. While semantic segmentation benefits extensively from the end-to-end training strategy, instance segmentation is frequently framed as a multi-stage task, supported by learning-based discrimination and post-process clustering. Independent optimizations on substages instigate the accumulation of segmentation errors. In this work, we propose to embed prior clustering information into an embedding learning framework FCRNet, stimulating the one-stage instance segmentation. FCRNet relieves the complexity of post process by incorporating the number of clustering groups into the embedding space. The superior performance of FCRNet is verified and compared with other methods on the nucleus dataset BBBC006.