Abstract:The depth/thermal information is beneficial for detecting salient object with conventional RGB images. However, in dual-modal salient object detection (SOD) model, the robustness against noisy inputs and modality missing is crucial but rarely studied. To tackle this problem, we introduce \textbf{Co}nditional Dropout and \textbf{LA}nguage-driven(\textbf{CoLA}) framework comprising two core components. 1) Language-driven Quality Assessment (LQA): Leveraging a pretrained vision-language model with a prompt learner, the LQA recalibrates image contributions without requiring additional quality annotations. This approach effectively mitigates the impact of noisy inputs. 2) Conditional Dropout (CD): A learning method to strengthen the model's adaptability in scenarios with missing modalities, while preserving its performance under complete modalities. The CD serves as a plug-in training scheme that treats modality-missing as conditions, strengthening the overall robustness of various dual-modal SOD models. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art dual-modal SOD models, under both modality-complete and modality-missing conditions. We will release source code upon acceptance.
Abstract:A comprehensive understanding of surgical scenes allows for monitoring of the surgical process, reducing the occurrence of accidents and enhancing efficiency for medical professionals. Semantic modeling within operating rooms, as a scene graph generation (SGG) task, is challenging since it involves consecutive recognition of subtle surgical actions over prolonged periods. To address this challenge, we propose a Tri-modal (i.e., images, point clouds, and language) confluence with Temporal dynamics framework, termed TriTemp-OR. Diverging from previous approaches that integrated temporal information via memory graphs, our method embraces two advantages: 1) we directly exploit bi-modal temporal information from the video streaming for hierarchical feature interaction, and 2) the prior knowledge from Large Language Models (LLMs) is embedded to alleviate the class-imbalance problem in the operating theatre. Specifically, our model performs temporal interactions across 2D frames and 3D point clouds, including a scale-adaptive multi-view temporal interaction (ViewTemp) and a geometric-temporal point aggregation (PointTemp). Furthermore, we transfer knowledge from the biomedical LLM, LLaVA-Med, to deepen the comprehension of intraoperative relations. The proposed TriTemp-OR enables the aggregation of tri-modal features through relation-aware unification to predict relations so as to generate scene graphs. Experimental results on the 4D-OR benchmark demonstrate the superior performance of our model for long-term OR streaming.
Abstract:In the rapidly evolving field of artificial intelligence, the creation and utilization of synthetic datasets have become increasingly significant. This report delves into the multifaceted aspects of synthetic data, particularly emphasizing the challenges and potential biases these datasets may harbor. It explores the methodologies behind synthetic data generation, spanning traditional statistical models to advanced deep learning techniques, and examines their applications across diverse domains. The report also critically addresses the ethical considerations and legal implications associated with synthetic datasets, highlighting the urgent need for mechanisms to ensure fairness, mitigate biases, and uphold ethical standards in AI development.
Abstract:In recent years, saliency ranking has emerged as a challenging task focusing on assessing the degree of saliency at instance-level. Being subjective, even humans struggle to identify the precise order of all salient instances. Previous approaches undertake the saliency ranking by directly sorting the rank scores of salient instances, which have not explicitly resolved the inherent ambiguities. To overcome this limitation, we propose the ranking by partition paradigm, which segments unordered salient instances into partitions and then ranks them based on the correlations among these partitions. The ranking by partition paradigm alleviates ranking ambiguities in a general sense, as it consistently improves the performance of other saliency ranking models. Additionally, we introduce the Dense Pyramid Transformer (DPT) to enable global cross-scale interactions, which significantly enhances feature interactions with reduced computational burden. Extensive experiments demonstrate that our approach outperforms all existing methods. The code for our method is available at \url{https://github.com/ssecv/PSR}.
Abstract:High-accuracy Dichotomous Image Segmentation (DIS) aims to pinpoint category-agnostic foreground objects from natural scenes. The main challenge for DIS involves identifying the highly accurate dominant area while rendering detailed object structure. However, directly using a general encoder-decoder architecture may result in an oversupply of high-level features and neglect the shallow spatial information necessary for partitioning meticulous structures. To fill this gap, we introduce a novel Unite-Divide-Unite Network (UDUN} that restructures and bipartitely arranges complementary features to simultaneously boost the effectiveness of trunk and structure identification. The proposed UDUN proceeds from several strengths. First, a dual-size input feeds into the shared backbone to produce more holistic and detailed features while keeping the model lightweight. Second, a simple Divide-and-Conquer Module (DCM) is proposed to decouple multiscale low- and high-level features into our structure decoder and trunk decoder to obtain structure and trunk information respectively. Moreover, we design a Trunk-Structure Aggregation module (TSA) in our union decoder that performs cascade integration for uniform high-accuracy segmentation. As a result, UDUN performs favorably against state-of-the-art competitors in all six evaluation metrics on overall DIS-TE, i.e., achieving 0.772 weighted F-measure and 977 HCE. Using 1024*1024 input, our model enables real-time inference at 65.3 fps with ResNet-18.
Abstract:We propose a novel approach for RGB-D salient instance segmentation using a dual-branch cross-modal feature calibration architecture called CalibNet. Our method simultaneously calibrates depth and RGB features in the kernel and mask branches to generate instance-aware kernels and mask features. CalibNet consists of three simple modules, a dynamic interactive kernel (DIK) and a weight-sharing fusion (WSF), which work together to generate effective instance-aware kernels and integrate cross-modal features. To improve the quality of depth features, we incorporate a depth similarity assessment (DSA) module prior to DIK and WSF. In addition, we further contribute a new DSIS dataset, which contains 1,940 images with elaborate instance-level annotations. Extensive experiments on three challenging benchmarks show that CalibNet yields a promising result, i.e., 58.0% AP with 320*480 input size on the COME15K-N test set, which significantly surpasses the alternative frameworks. Our code and dataset are available at: https://github.com/PJLallen/CalibNet.
Abstract:Pixel-wise predction with deep neural network has become an effective paradigm for salient object detection (SOD) and achieved remakable performance. However, very few SOD models are robust against adversarial attacks which are visually imperceptible for human visual attention. The previous work robust salient object detection against adversarial attacks (ROSA) shuffles the pre-segmented superpixels and then refines the coarse saliency map by the densely connected CRF. Different from ROSA that rely on various pre- and post-processings, this paper proposes a light-weight Learnble Noise (LeNo) to against adversarial attacks for SOD models. LeNo preserves accuracy of SOD models on both adversarial and clean images, as well as inference speed. In general, LeNo consists of a simple shallow noise and noise estimation that embedded in the encoder and decoder of arbitrary SOD networks respectively. Inspired by the center prior of human visual attention mechanism, we initialize the shallow noise with a cross-shaped gaussian distribution for better defense against adversarial attacks. Instead of adding additional network components for post-processing, the proposed noise estimation modifies only one channel of the decoder. With the deeply-supervised noise-decoupled training on state-of-the-art RGB and RGB-D SOD networks, LeNo outperforms previous works not only on adversarial images but also clean images, which contributes stronger robustness for SOD.
Abstract:We present OSFormer, the first one-stage transformer framework for camouflaged instance segmentation (CIS). OSFormer is based on two key designs. First, we design a location-sensing transformer (LST) to obtain the location label and instance-aware parameters by introducing the location-guided queries and the blend-convolution feedforward network. Second, we develop a coarse-to-fine fusion (CFF) to merge diverse context information from the LST encoder and CNN backbone. Coupling these two components enables OSFormer to efficiently blend local features and long-range context dependencies for predicting camouflaged instances. Compared with two-stage frameworks, our OSFormer reaches 41% AP and achieves good convergence efficiency without requiring enormous training data, i.e., only 3,040 samples under 60 epochs. Code link: https://github.com/PJLallen/OSFormer.
Abstract:Salient instance segmentation is a new challenging task that received widespread attention in saliency detection area. Due to the limited scale of the existing dataset and the high mask annotations cost, it is difficult to train a salient instance neural network completely. In this paper, we appeal to train a salient instance segmentation framework by a weakly supervised source without resorting to laborious labeling. We present a cyclic global context salient instance segmentation network (CGCNet), which is supervised by the combination of the binary salient regions and bounding boxes from the existing saliency detection datasets. For a precise pixel-level location, a global feature refining layer is introduced that dilates the context features of each salient instance to the global context in the image. Meanwhile, a labeling updating scheme is embedded in the proposed framework to online update the weak annotations for next iteration. Experiment results demonstrate that the proposed end-to-end network trained by weakly supervised annotations can be competitive to the existing fully supervised salient instance segmentation methods. Without bells and whistles, our proposed method achieves a mask AP of 57.13%, which outperforms the best fully supervised methods and establishes new states of the art for weakly supervised salient instance segmentation.
Abstract:The clinical treatment of degenerative and developmental lumbar spinal stenosis (LSS) is different. Computed tomography (CT) is helpful in distinguishing degenerative and developmental LSS due to its advantage in imaging of osseous and calcified tissues. However, boundaries of the vertebral body, spinal canal and dural sac have low contrast and hard to identify in a CT image, so the diagnosis depends heavily on the knowledge of expert surgeons and radiologists. In this paper, we develop an automatic lumbar spinal CT image segmentation method to assist LSS diagnosis. The main contributions of this paper are the following: 1) a new lumbar spinal CT image dataset is constructed that contains 2393 axial CT images collected from 279 patients, with the ground truth of pixel-level segmentation labels; 2) a dual densely connected U-shaped neural network (DDU-Net) is used to segment the spinal canal, dural sac and vertebral body in an end-to-end manner; 3) DDU-Net is capable of segmenting tissues with large scale-variant, inconspicuous edges (e.g., spinal canal) and extremely small size (e.g., dural sac); and 4) DDU-Net is practical, requiring no image preprocessing such as contrast enhancement, registration and denoising, and the running time reaches 12 FPS. In the experiment, we achieve state-of-the-art performance on the lumbar spinal image segmentation task. We expect that the technique will increase both radiology workflow efficiency and the perceived value of radiology reports for referring clinicians and patients.