Abstract:Tactile sensing is crucial for robotic hands to achieve human-level dexterous manipulation, especially in scenarios with visual occlusion. However, its application is often hindered by the difficulty of collecting large-scale real-world robotic tactile data. In this study, we propose to collect low-cost human manipulation data using haptic gloves for tactile-based robotic policy learning. The misalignment between human and robotic tactile data makes it challenging to transfer policies learned from human data to robots. To bridge this gap, we propose UniTacHand, a unified representation to align robotic tactile information captured by dexterous hands with human hand touch obtained from gloves. First, we project tactile signals from both human hands and robotic hands onto a morphologically consistent 2D surface space of the MANO hand model. This unification standardizes the heterogeneous data structures and inherently embeds the tactile signals with spatial context. Then, we introduce a contrastive learning method to align them into a unified latent space, trained on only 10 minutes of paired data from our data collection system. Our approach enables zero-shot tactile-based policy transfer from humans to a real robot, generalizing to objects unseen in the pre-training data. We also demonstrate that co-training on mixed data, including both human and robotic demonstrations via UniTacHand, yields better performance and data efficiency compared with using only robotic data. UniTacHand paves a path toward general, scalable, and data-efficient learning for tactile-based dexterous hands.
Abstract:Vision-Language-Action (VLA) models provide a promising paradigm for robot learning by integrating visual perception with language-guided policy learning. However, most existing approaches rely on 2D visual inputs to perform actions in 3D physical environments, creating a significant gap between perception and action grounding. To bridge this gap, we propose a Spatial-Aware VLA Pretraining paradigm that performs explicit alignment between visual space and physical space during pretraining, enabling models to acquire 3D spatial understanding before robot policy learning. Starting from pretrained vision-language models, we leverage large-scale human demonstration videos to extract 3D visual and 3D action annotations, forming a new source of supervision that aligns 2D visual observations with 3D spatial reasoning. We instantiate this paradigm with VIPA-VLA, a dual-encoder architecture that incorporates a 3D visual encoder to augment semantic visual representations with 3D-aware features. When adapted to downstream robot tasks, VIPA-VLA achieves significantly improved grounding between 2D vision and 3D action, resulting in more robust and generalizable robotic policies.
Abstract:Reinforcement learning (RL) has achieved great success in dexterous grasping, significantly improving grasp performance and generalization from simulation to the real world. However, fine-grained functional grasping, which is essential for downstream manipulation tasks, remains underexplored and faces several challenges: the complexity of specifying goals and reward functions for functional grasps across diverse objects, the difficulty of multi-task RL exploration, and the challenge of sim-to-real transfer. In this work, we propose DemoFunGrasp for universal dexterous functional grasping. We factorize functional grasping conditions into two complementary components - grasping style and affordance - and integrate them into an RL framework that can learn to grasp any object with any functional grasping condition. To address the multi-task optimization challenge, we leverage a single grasping demonstration and reformulate the RL problem as one-step demonstration editing, substantially enhancing sample efficiency and performance. Experimental results in both simulation and the real world show that DemoFunGrasp generalizes to unseen combinations of objects, affordances, and grasping styles, outperforming baselines in both success rate and functional grasping accuracy. In addition to strong sim-to-real capability, by incorporating a vision-language model (VLM) for planning, our system achieves autonomous instruction-following grasp execution.




Abstract:In recent years, Multimodal Large Language Models (MLLMs) have demonstrated the ability to serve as high-level planners, enabling robots to follow complex human instructions. However, their effectiveness, especially in long-horizon tasks involving dual-arm humanoid robots, remains limited. This limitation arises from two main challenges: (i) the absence of simulation platforms that systematically support task evaluation and data collection for humanoid robots, and (ii) the insufficient embodiment awareness of current MLLMs, which hinders reasoning about dual-arm selection logic and body positions during planning. To address these issues, we present DualTHOR, a new dual-arm humanoid simulator, with continuous transition and a contingency mechanism. Building on this platform, we propose Proprio-MLLM, a model that enhances embodiment awareness by incorporating proprioceptive information with motion-based position embedding and a cross-spatial encoder. Experiments show that, while existing MLLMs struggle in this environment, Proprio-MLLM achieves an average improvement of 19.75% in planning performance. Our work provides both an essential simulation platform and an effective model to advance embodied intelligence in humanoid robotics. The code is available at https://anonymous.4open.science/r/DualTHOR-5F3B.
Abstract:Universal grasping with multi-fingered dexterous hands is a fundamental challenge in robotic manipulation. While recent approaches successfully learn closed-loop grasping policies using reinforcement learning (RL), the inherent difficulty of high-dimensional, long-horizon exploration necessitates complex reward and curriculum design, often resulting in suboptimal solutions across diverse objects. We propose DemoGrasp, a simple yet effective method for learning universal dexterous grasping. We start from a single successful demonstration trajectory of grasping a specific object and adapt to novel objects and poses by editing the robot actions in this trajectory: changing the wrist pose determines where to grasp, and changing the hand joint angles determines how to grasp. We formulate this trajectory editing as a single-step Markov Decision Process (MDP) and use RL to optimize a universal policy across hundreds of objects in parallel in simulation, with a simple reward consisting of a binary success term and a robot-table collision penalty. In simulation, DemoGrasp achieves a 95% success rate on DexGraspNet objects using the Shadow Hand, outperforming previous state-of-the-art methods. It also shows strong transferability, achieving an average success rate of 84.6% across diverse dexterous hand embodiments on six unseen object datasets, while being trained on only 175 objects. Through vision-based imitation learning, our policy successfully grasps 110 unseen real-world objects, including small, thin items. It generalizes to spatial, background, and lighting changes, supports both RGB and depth inputs, and extends to language-guided grasping in cluttered scenes.
Abstract:Building autonomous robotic agents capable of achieving human-level performance in real-world embodied tasks is an ultimate goal in humanoid robot research. Recent advances have made significant progress in high-level cognition with Foundation Models (FMs) and low-level skill development for humanoid robots. However, directly combining these components often results in poor robustness and efficiency due to compounding errors in long-horizon tasks and the varied latency of different modules. We introduce Being-0, a hierarchical agent framework that integrates an FM with a modular skill library. The FM handles high-level cognitive tasks such as instruction understanding, task planning, and reasoning, while the skill library provides stable locomotion and dexterous manipulation for low-level control. To bridge the gap between these levels, we propose a novel Connector module, powered by a lightweight vision-language model (VLM). The Connector enhances the FM's embodied capabilities by translating language-based plans into actionable skill commands and dynamically coordinating locomotion and manipulation to improve task success. With all components, except the FM, deployable on low-cost onboard computation devices, Being-0 achieves efficient, real-time performance on a full-sized humanoid robot equipped with dexterous hands and active vision. Extensive experiments in large indoor environments demonstrate Being-0's effectiveness in solving complex, long-horizon tasks that require challenging navigation and manipulation subtasks. For further details and videos, visit https://beingbeyond.github.io/being-0.




Abstract:Dexterous hands exhibit significant potential for complex real-world grasping tasks. While recent studies have primarily focused on learning policies for specific robotic hands, the development of a universal policy that controls diverse dexterous hands remains largely unexplored. In this work, we study the learning of cross-embodiment dexterous grasping policies using reinforcement learning (RL). Inspired by the capability of human hands to control various dexterous hands through teleoperation, we propose a universal action space based on the human hand's eigengrasps. The policy outputs eigengrasp actions that are then converted into specific joint actions for each robot hand through a retargeting mapping. We simplify the robot hand's proprioception to include only the positions of fingertips and the palm, offering a unified observation space across different robot hands. Our approach demonstrates an 80% success rate in grasping objects from the YCB dataset across four distinct embodiments using a single vision-based policy. Additionally, our policy exhibits zero-shot generalization to two previously unseen embodiments and significant improvement in efficient finetuning. For further details and videos, visit our project page https://sites.google.com/view/crossdex.
Abstract:Bimanual dexterous manipulation is a critical yet underexplored area in robotics. Its high-dimensional action space and inherent task complexity present significant challenges for policy learning, and the limited task diversity in existing benchmarks hinders general-purpose skill development. Existing approaches largely depend on reinforcement learning, often constrained by intricately designed reward functions tailored to a narrow set of tasks. In this work, we present a novel approach for efficiently learning diverse bimanual dexterous skills from abundant human demonstrations. Specifically, we introduce BiDexHD, a framework that unifies task construction from existing bimanual datasets and employs teacher-student policy learning to address all tasks. The teacher learns state-based policies using a general two-stage reward function across tasks with shared behaviors, while the student distills the learned multi-task policies into a vision-based policy. With BiDexHD, scalable learning of numerous bimanual dexterous skills from auto-constructed tasks becomes feasible, offering promising advances toward universal bimanual dexterous manipulation. Our empirical evaluation on the TACO dataset, spanning 141 tasks across six categories, demonstrates a task fulfillment rate of 74.59% on trained tasks and 51.07% on unseen tasks, showcasing the effectiveness and competitive zero-shot generalization capabilities of BiDexHD. For videos and more information, visit our project page https://sites.google.com/view/bidexhd.




Abstract:Universal dexterous grasping across diverse objects presents a fundamental yet formidable challenge in robot learning. Existing approaches using reinforcement learning (RL) to develop policies on extensive object datasets face critical limitations, including complex curriculum design for multi-task learning and limited generalization to unseen objects. To overcome these challenges, we introduce ResDex, a novel approach that integrates residual policy learning with a mixture-of-experts (MoE) framework. ResDex is distinguished by its use of geometry-unaware base policies that are efficiently acquired on individual objects and capable of generalizing across a wide range of unseen objects. Our MoE framework incorporates several base policies to facilitate diverse grasping styles suitable for various objects. By learning residual actions alongside weights that combine these base policies, ResDex enables efficient multi-task RL for universal dexterous grasping. ResDex achieves state-of-the-art performance on the DexGraspNet dataset comprising 3,200 objects with an 88.8% success rate. It exhibits no generalization gap with unseen objects and demonstrates superior training efficiency, mastering all tasks within only 12 hours on a single GPU.




Abstract:Large Language Models (LLMs) have demonstrated proficiency in utilizing various tools by coding, yet they face limitations in handling intricate logic and precise control. In embodied tasks, high-level planning is amenable to direct coding, while low-level actions often necessitate task-specific refinement, such as Reinforcement Learning (RL). To seamlessly integrate both modalities, we introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent. The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks. This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline. Our approach outperforms traditional RL methods and existing GPT agents, demonstrating superior efficiency. In the Minecraft game, it rapidly obtains diamonds within a single day on an RTX3090. Additionally, it achieves SOTA performance across all designated MineDojo tasks.