



Abstract:Accurate estimation of item (question or task) difficulty is critical for educational assessment but suffers from the cold start problem. While Large Language Models demonstrate superhuman problem-solving capabilities, it remains an open question whether they can perceive the cognitive struggles of human learners. In this work, we present a large-scale empirical analysis of Human-AI Difficulty Alignment for over 20 models across diverse domains such as medical knowledge and mathematical reasoning. Our findings reveal a systematic misalignment where scaling up model size is not reliably helpful; instead of aligning with humans, models converge toward a shared machine consensus. We observe that high performance often impedes accurate difficulty estimation, as models struggle to simulate the capability limitations of students even when being explicitly prompted to adopt specific proficiency levels. Furthermore, we identify a critical lack of introspection, as models fail to predict their own limitations. These results suggest that general problem-solving capability does not imply an understanding of human cognitive struggles, highlighting the challenge of using current models for automated difficulty prediction.




Abstract:Real-world ecommerce recommender systems must deliver relevant items under strict tens-of-milliseconds latency constraints despite challenges such as cold-start products, rapidly shifting user intent, and dynamic context including seasonality, holidays, and promotions. We introduce STARS, a transformer-based sequential recommendation framework built for large-scale, low-latency ecommerce settings. STARS combines several innovations: dual-memory user embeddings that separate long-term preferences from short-term session intent; semantic item tokens that fuse pretrained text embeddings, learnable deltas, and LLM-derived attribute tags, strengthening content-based matching, long-tail coverage, and cold-start performance; context-aware scoring with learned calendar and event offsets; and a latency-conscious two-stage retrieval pipeline that performs offline embedding generation and online maximum inner-product search with filtering, enabling tens-of-milliseconds response times. In offline evaluations on production-scale data, STARS improves Hit@5 by more than 75 percent relative to our existing LambdaMART system. A large-scale A/B test on 6 million visits shows statistically significant lifts, including Total Orders +0.8%, Add-to-Cart on Home +2.0%, and Visits per User +0.5%. These results demonstrate that combining semantic enrichment, multi-intent modeling, and deployment-oriented design can yield state-of-the-art recommendation quality in real-world environments without sacrificing serving efficiency.
Abstract:Chain-of-Thought (CoT) prompting helps Large Language Models (LLMs) tackle complex reasoning by eliciting explicit step-by-step rationales. However, CoT's verbosity increases latency and memory usage and may propagate early errors across long chains. We propose the Reasoning Capsule (R-Capsule), a framework that aims to combine the efficiency of latent reasoning with the transparency of explicit CoT. The core idea is to compress the high-level plan into a small set of learned latent tokens (a Reasoning Capsule) while keeping execution steps lightweight or explicit. This hybrid approach is inspired by the Information Bottleneck (IB) principle, where we encourage the capsule to be approximately minimal yet sufficient for the task. Minimality is encouraged via a low-capacity bottleneck, which helps improve efficiency. Sufficiency is encouraged via a dual objective: a primary task loss for answer accuracy and an auxiliary plan-reconstruction loss that encourages the capsule to faithfully represent the original textual plan. The reconstruction objective helps ground the latent space, thereby improving interpretability and reducing the use of uninformative shortcuts. Our framework strikes a balance between efficiency, accuracy, and interpretability, thereby reducing the visible token footprint of reasoning while maintaining or improving accuracy on complex benchmarks. Our codes are available at: https://anonymous.4open.science/r/Reasoning-Capsule-7BE0
Abstract:High-speed obstacle avoidance of uncrewed aerial vehicles (UAVs) in cluttered environments is a significant challenge. Existing UAV planning and obstacle avoidance systems can only fly at moderate speeds or at high speeds over empty or sparse fields. In this article, we propose a hyper-efficient perception and planning system for the high-speed obstacle avoidance of UAVs. The system mainly consists of three modules: 1) A novel incremental robocentric mapping method with distance and gradient information, which takes 89.5% less time compared to existing methods. 2) A novel obstacle-aware topological path search method that generates multiple distinct paths. 3) An adaptive gradient-based high-speed trajectory generation method with a novel time pre-allocation algorithm. With these innovations, the system has an excellent real-time performance with only milliseconds latency in each iteration, taking 79.24% less time than existing methods at high speeds (15 m/s in cluttered environments), allowing UAVs to fly swiftly and avoid obstacles in cluttered environments. The planned trajectory of the UAV is close to the global optimum in both temporal and spatial domains. Finally, extensive validations in both simulation and real-world experiments demonstrate the effectiveness of our proposed system for high-speed navigation in cluttered environments.
Abstract:Purpose: The scarcity of high-quality curated labeled medical training data remains one of the major limitations in applying artificial intelligence (AI) systems to breast cancer diagnosis. Deep models for mammogram analysis and mass (or micro-calcification) detection require training with a large volume of labeled images, which are often expensive and time-consuming to collect. To reduce this challenge, we proposed a novel method that leverages self-supervised learning (SSL) and a deep hybrid model, named \textbf{HybMNet}, which combines local self-attention and fine-grained feature extraction to enhance breast cancer detection on screening mammograms. Approach: Our method employs a two-stage learning process: (1) SSL Pretraining: We utilize EsViT, a SSL technique, to pretrain a Swin Transformer (Swin-T) using a limited set of mammograms. The pretrained Swin-T then serves as the backbone for the downstream task. (2) Downstream Training: The proposed HybMNet combines the Swin-T backbone with a CNN-based network and a novel fusion strategy. The Swin-T employs local self-attention to identify informative patch regions from the high-resolution mammogram, while the CNN-based network extracts fine-grained local features from the selected patches. A fusion module then integrates global and local information from both networks to generate robust predictions. The HybMNet is trained end-to-end, with the loss function combining the outputs of the Swin-T and CNN modules to optimize feature extraction and classification performance. Results: The proposed method was evaluated for its ability to detect breast cancer by distinguishing between benign (normal) and malignant mammograms. Leveraging SSL pretraining and the HybMNet model, it achieved AUC of 0.864 (95% CI: 0.852, 0.875) on the CMMD dataset and 0.889 (95% CI: 0.875, 0.903) on the INbreast dataset, highlighting its effectiveness.
Abstract:Accurate detection of breast cancer from high-resolution mammograms is crucial for early diagnosis and effective treatment planning. Previous studies have shown the potential of using single-view mammograms for breast cancer detection. However, incorporating multi-view data can provide more comprehensive insights. Multi-view classification, especially in medical imaging, presents unique challenges, particularly when dealing with large-scale, high-resolution data. In this work, we propose a novel Multi-view Visual Prompt Tuning Network (MVPT-NET) for analyzing multiple screening mammograms. We first pretrain a robust single-view classification model on high-resolution mammograms and then innovatively adapt multi-view feature learning into a task-specific prompt tuning process. This technique selectively tunes a minimal set of trainable parameters (7\%) while retaining the robustness of the pre-trained single-view model, enabling efficient integration of multi-view data without the need for aggressive downsampling. Our approach offers an efficient alternative to traditional feature fusion methods, providing a more robust, scalable, and efficient solution for high-resolution mammogram analysis. Experimental results on a large multi-institution dataset demonstrate that our method outperforms conventional approaches while maintaining detection efficiency, achieving an AUROC of 0.852 for distinguishing between Benign, DCIS, and Invasive classes. This work highlights the potential of MVPT-NET for medical imaging tasks and provides a scalable solution for integrating multi-view data in breast cancer detection.
Abstract:We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV Cache in large language model (LLM) inference, delivering substantial memory savings while preserving superior performance. Previous methods either assume that later tokens are more important or attempt to predict important tokens based on earlier attention patterns. Both approaches, however, can result in performance bottlenecks or frequent mispredictions. LogQuant takes a different approach. By applying a log-based filtering mechanism, it selectively compresses the KV Cache across the entire context, achieving better performance with the same or even reduced memory footprint compared to existing methods. In benchmark tests, it enhances throughput by 25% and boosts batch size by 60% without increasing memory consumption. For challenging tasks such as Math and Code Completion, LogQuant improves accuracy by 40% to 200% at the same compression ratio, outperforming comparable techniques.LogQuant integrates effortlessly with popular inference frameworks like Python's transformers library. Implementation can be available in https://github.com/Concyclics/LogQuantKV.




Abstract:Learning from label proportions (LLP), i.e., a challenging weakly-supervised learning task, aims to train a classifier by using bags of instances and the proportions of classes within bags, rather than annotated labels for each instance. Beyond the traditional bag-level loss, the mainstream methodology of LLP is to incorporate an auxiliary instance-level loss with pseudo-labels formed by predictions. Unfortunately, we empirically observed that the pseudo-labels are are often inaccurate due to over-smoothing, especially for the scenarios with large bag sizes, hurting the classifier induction. To alleviate this problem, we suggest a novel LLP method, namely Learning from Label Proportions with Auxiliary High-confident Instance-level Loss (L^2P-AHIL). Specifically, we propose a dual entropy-based weight (DEW) method to adaptively measure the confidences of pseudo-labels. It simultaneously emphasizes accurate predictions at the bag level and avoids overly smoothed predictions. We then form high-confident instance-level loss with DEW, and jointly optimize it with the bag-level loss in a self-training manner. The experimental results on benchmark datasets show that L^2P-AHIL can surpass the existing baseline methods, and the performance gain can be more significant as the bag size increases.




Abstract:Large Language Models (LLMs) like GPT-4, LLaMA, and Qwen have demonstrated remarkable success across a wide range of applications. However, these models remain inherently vulnerable to prompt injection attacks, which can bypass existing safety mechanisms, highlighting the urgent need for more robust attack detection methods and comprehensive evaluation benchmarks. To address these challenges, we introduce GenTel-Safe, a unified framework that includes a novel prompt injection attack detection method, GenTel-Shield, along with a comprehensive evaluation benchmark, GenTel-Bench, which compromises 84812 prompt injection attacks, spanning 3 major categories and 28 security scenarios. To prove the effectiveness of GenTel-Shield, we evaluate it together with vanilla safety guardrails against the GenTel-Bench dataset. Empirically, GenTel-Shield can achieve state-of-the-art attack detection success rates, which reveals the critical weakness of existing safeguarding techniques against harmful prompts. For reproducibility, we have made the code and benchmarking dataset available on the project page at https://gentellab.github.io/gentel-safe.github.io/.
Abstract:Previous studies in deepfake detection have shown promising results when testing face forgeries from the same dataset as the training. However, the problem remains challenging when one tries to generalize the detector to forgeries from unseen datasets and created by unseen methods. In this work, we present a novel general deepfake detection method, called \textbf{C}urricular \textbf{D}ynamic \textbf{F}orgery \textbf{A}ugmentation (CDFA), which jointly trains a deepfake detector with a forgery augmentation policy network. Unlike the previous works, we propose to progressively apply forgery augmentations following a monotonic curriculum during the training. We further propose a dynamic forgery searching strategy to select one suitable forgery augmentation operation for each image varying between training stages, producing a forgery augmentation policy optimized for better generalization. In addition, we propose a novel forgery augmentation named self-shifted blending image to simply imitate the temporal inconsistency of deepfake generation. Comprehensive experiments show that CDFA can significantly improve both cross-datasets and cross-manipulations performances of various naive deepfake detectors in a plug-and-play way, and make them attain superior performances over the existing methods in several benchmark datasets.