Alert button
Picture for Anne L. Martel

Anne L. Martel

Alert button

VertDetect: Fully End-to-End 3D Vertebral Instance Segmentation Model

Nov 16, 2023
Geoff Klein, Michael Hardisty, Cari Whyne, Anne L. Martel

Figure 1 for VertDetect: Fully End-to-End 3D Vertebral Instance Segmentation Model
Figure 2 for VertDetect: Fully End-to-End 3D Vertebral Instance Segmentation Model
Figure 3 for VertDetect: Fully End-to-End 3D Vertebral Instance Segmentation Model
Figure 4 for VertDetect: Fully End-to-End 3D Vertebral Instance Segmentation Model
Viaarxiv icon

Understanding metric-related pitfalls in image analysis validation

Feb 09, 2023
Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben Van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein

Figure 1 for Understanding metric-related pitfalls in image analysis validation
Figure 2 for Understanding metric-related pitfalls in image analysis validation
Figure 3 for Understanding metric-related pitfalls in image analysis validation
Figure 4 for Understanding metric-related pitfalls in image analysis validation
Viaarxiv icon

Metrics reloaded: Pitfalls and recommendations for image analysis validation

Jun 03, 2022
Lena Maier-Hein, Annika Reinke, Evangelia Christodoulou, Ben Glocker, Patrick Godau, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Minu D. Tizabi, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Beth Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Felix Nickel, Brennan Nichyporuk, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clarisa Sánchez Gutiérrez, Shravya Shetty, Maarten van Smeden, Carole H. Sudre, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben Van Calster, Gaël Varoquaux, Paul F. Jäger

Figure 1 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 2 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 3 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 4 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Viaarxiv icon

ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI

Mar 11, 2022
Lyndon Boone, Mahdi Biparva, Parisa Mojiri Forooshani, Joel Ramirez, Mario Masellis, Robert Bartha, Sean Symons, Stephen Strother, Sandra E. Black, Chris Heyn, Anne L. Martel, Richard H. Swartz, Maged Goubran

Figure 1 for ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI
Figure 2 for ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI
Figure 3 for ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI
Figure 4 for ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI
Viaarxiv icon

Metastatic Cancer Outcome Prediction with Injective Multiple Instance Pooling

Mar 09, 2022
Jianan Chen, Anne L. Martel

Figure 1 for Metastatic Cancer Outcome Prediction with Injective Multiple Instance Pooling
Figure 2 for Metastatic Cancer Outcome Prediction with Injective Multiple Instance Pooling
Figure 3 for Metastatic Cancer Outcome Prediction with Injective Multiple Instance Pooling
Viaarxiv icon

BI-RADS BERT & Using Section Tokenization to Understand Radiology Reports

Oct 14, 2021
Grey Kuling, Dr. Belinda Curpen, Anne L. Martel

Figure 1 for BI-RADS BERT & Using Section Tokenization to Understand Radiology Reports
Figure 2 for BI-RADS BERT & Using Section Tokenization to Understand Radiology Reports
Figure 3 for BI-RADS BERT & Using Section Tokenization to Understand Radiology Reports
Figure 4 for BI-RADS BERT & Using Section Tokenization to Understand Radiology Reports
Viaarxiv icon

Resource and data efficient self supervised learning

Sep 03, 2021
Ozan Ciga, Tony Xu, Anne L. Martel

Figure 1 for Resource and data efficient self supervised learning
Figure 2 for Resource and data efficient self supervised learning
Figure 3 for Resource and data efficient self supervised learning
Figure 4 for Resource and data efficient self supervised learning
Viaarxiv icon

Self-supervised driven consistency training for annotation efficient histopathology image analysis

Feb 09, 2021
Chetan L. Srinidhi, Seung Wook Kim, Fu-Der Chen, Anne L. Martel

Figure 1 for Self-supervised driven consistency training for annotation efficient histopathology image analysis
Figure 2 for Self-supervised driven consistency training for annotation efficient histopathology image analysis
Figure 3 for Self-supervised driven consistency training for annotation efficient histopathology image analysis
Figure 4 for Self-supervised driven consistency training for annotation efficient histopathology image analysis
Viaarxiv icon

AMINN: Autoencoder-based Multiple Instance Neural Network for Outcome Prediction of Multifocal Liver Metastases

Dec 12, 2020
Jianan Chen, Helen M. C. Cheung, Laurent Milot, Anne L. Martel

Figure 1 for AMINN: Autoencoder-based Multiple Instance Neural Network for Outcome Prediction of Multifocal Liver Metastases
Figure 2 for AMINN: Autoencoder-based Multiple Instance Neural Network for Outcome Prediction of Multifocal Liver Metastases
Figure 3 for AMINN: Autoencoder-based Multiple Instance Neural Network for Outcome Prediction of Multifocal Liver Metastases
Figure 4 for AMINN: Autoencoder-based Multiple Instance Neural Network for Outcome Prediction of Multifocal Liver Metastases
Viaarxiv icon