Abstract:Large language models (LLMs) have been widely explored for automated scoring in low-stakes assessment to facilitate learning and instruction. Empirical evidence related to which LLM produces the most reliable scores and induces least rater effects needs to be collected before the use of LLMs for automated scoring in practice. This study compared ten LLMs (ChatGPT 3.5, ChatGPT 4, ChatGPT 4o, OpenAI o1, Claude 3.5 Sonnet, Gemini 1.5, Gemini 1.5 Pro, Gemini 2.0, as well as DeepSeek V3, and DeepSeek R1) with human expert raters in scoring two types of writing tasks. The accuracy of the holistic and analytic scores from LLMs compared with human raters was evaluated in terms of Quadratic Weighted Kappa. Intra-rater consistency across prompts was compared in terms of Cronbach Alpha. Rater effects of LLMs were evaluated and compared with human raters using the Many-Facet Rasch model. The results in general supported the use of ChatGPT 4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet with high scoring accuracy, better rater reliability, and less rater effects.
Abstract:Large language models (LLMs) have been widely explored for automated scoring in low-stakes assessment to facilitate learning and instruction. Empirical evidence related to which LLM produces the most reliable scores and induces least rater effects needs to be collected before the use of LLMs for automated scoring in practice. This study compared ten LLMs (ChatGPT 3.5, ChatGPT 4, ChatGPT 4o, OpenAI o1, Claude 3.5 Sonnet, Gemini 1.5, Gemini 1.5 Pro, Gemini 2.0, as well as DeepSeek V3, and DeepSeek R1) with human expert raters in scoring two types of writing tasks. The accuracy of the holistic and analytic scores from LLMs compared with human raters was evaluated in terms of Quadratic Weighted Kappa. Intra-rater consistency across prompts was compared in terms of Cronbach Alpha. Rater effects of LLMs were evaluated and compared with human raters using the Many-Facet Rasch model. The results in general supported the use of ChatGPT 4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet with high scoring accuracy, better rater reliability, and less rater effects.
Abstract:The integration of artificial intelligence (AI) in educational measurement has revolutionized assessment methods, enabling automated scoring, rapid content analysis, and personalized feedback through machine learning and natural language processing. These advancements provide timely, consistent feedback and valuable insights into student performance, thereby enhancing the assessment experience. However, the deployment of AI in education also raises significant ethical concerns regarding validity, reliability, transparency, fairness, and equity. Issues such as algorithmic bias and the opacity of AI decision-making processes pose risks of perpetuating inequalities and affecting assessment outcomes. Responding to these concerns, various stakeholders, including educators, policymakers, and organizations, have developed guidelines to ensure ethical AI use in education. The National Council of Measurement in Education's Special Interest Group on AI in Measurement and Education (AIME) also focuses on establishing ethical standards and advancing research in this area. In this paper, a diverse group of AIME members examines the ethical implications of AI-powered tools in educational measurement, explores significant challenges such as automation bias and environmental impact, and proposes solutions to ensure AI's responsible and effective use in education.