Abstract:Geometric spatial reasoning forms the foundation of many applications in artificial intelligence, yet the ability of large language models (LLMs) to operate over geometric spatial information expressed in procedural code remains underexplored. In this paper, we address this gap by formalizing the Program-to-Geometry task, which challenges models to translate programmatic drawing code into accurate and abstract geometric reasoning. To evaluate this capability, we present GeoGramBench, a benchmark of 500 carefully refined problems organized by a tailored three-level taxonomy that considers geometric complexity rather than traditional mathematical reasoning complexity. Our comprehensive evaluation of 17 frontier LLMs reveals consistent and pronounced deficiencies: even the most advanced models achieve less than 50% accuracy at the highest abstraction level. These results highlight the unique challenges posed by program-driven spatial reasoning and establish GeoGramBench as a valuable resource for advancing research in symbolic-to-spatial geometric reasoning. Project page: https://github.com/LiAuto-DSR/GeoGramBench.
Abstract:Few-shot cross-modal retrieval focuses on learning cross-modal representations with limited training samples, enabling the model to handle unseen classes during inference. Unlike traditional cross-modal retrieval tasks, which assume that both training and testing data share the same class distribution, few-shot retrieval involves data with sparse representations across modalities. Existing methods often fail to adequately model the multi-peak distribution of few-shot cross-modal data, resulting in two main biases in the latent semantic space: intra-modal bias, where sparse samples fail to capture intra-class diversity, and inter-modal bias, where misalignments between image and text distributions exacerbate the semantic gap. These biases hinder retrieval accuracy. To address these issues, we propose a novel method, GCRDP, for few-shot cross-modal retrieval. This approach effectively captures the complex multi-peak distribution of data using a Gaussian Mixture Model (GMM) and incorporates a multi-positive sample contrastive learning mechanism for comprehensive feature modeling. Additionally, we introduce a new strategy for cross-modal semantic alignment, which constrains the relative distances between image and text feature distributions, thereby improving the accuracy of cross-modal representations. We validate our approach through extensive experiments on four benchmark datasets, demonstrating superior performance over six state-of-the-art methods.
Abstract:Graph neural networks (GNNs) have advanced recommender systems by modeling interaction relationships. However, existing graph-based recommenders rely on sparse ID features and do not fully exploit textual information, resulting in low information density within representations. Furthermore, graph contrastive learning faces challenges. Random negative sampling can introduce false negative samples, while fixed temperature coefficients cannot adapt to the heterogeneity of different nodes. In addition, current efforts to enhance recommendations with large language models (LLMs) have not fully utilized their Chain-of-Thought (CoT) reasoning capabilities to guide representation learning. To address these limitations, we introduces LGHRec (LLM-CoT Enhanced Graph Neural Recommendation with Harmonized Group Policy Optimization). This framework leverages the CoT reasoning ability of LLMs to generate semantic IDs, enriching reasoning processes and improving information density and semantic quality of representations. Moreover, we design a reinforcement learning algorithm, Harmonized Group Policy Optimization (HGPO), to optimize negative sampling strategies and temperature coefficients in contrastive learning. This approach enhances long-tail recommendation performance and ensures optimization consistency across different groups. Experimental results on three datasets demonstrate that LGHRec improves representation quality through semantic IDs generated by LLM's CoT reasoning and effectively boosts contrastive learning with HGPO. Our method outperforms several baseline models. The code is available at: https://anonymous.4open.science/r/LLM-Rec.
Abstract:This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency. It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures. The text-based memory section covers acquisition (selection and summarization), management (updating, accessing, storing, and resolving conflicts), and utilization (full-text search, SQL queries, semantic search). The KV cache-based memory section discusses selection methods (regularity-based summarization, score-based approaches, special token embeddings) and compression techniques (low-rank compression, KV merging, multimodal compression), along with management strategies like offloading and shared attention mechanisms. Parameter-based memory methods (LoRA, TTT, MoE) transform memories into model parameters to enhance efficiency, while hidden-state-based memory approaches (chunk mechanisms, recurrent transformers, Mamba model) improve long-text processing by combining RNN hidden states with current methods. Overall, the paper offers a comprehensive analysis of LLM memory mechanisms, highlighting their significance and future research directions.
Abstract:Visual Question Answering (VQA) models, which fall under the category of vision-language models, conventionally execute multiple downsampling processes on image inputs to strike a balance between computational efficiency and model performance. Although this approach aids in concentrating on salient features and diminishing computational burden, it incurs the loss of vital detailed information, a drawback that is particularly damaging in end-to-end autonomous driving scenarios. Downsampling can lead to an inadequate capture of distant or small objects such as pedestrians, road signs, or obstacles, all of which are crucial for safe navigation. This loss of features negatively impacts an autonomous driving system's capacity to accurately perceive the environment, potentially escalating the risk of accidents. To tackle this problem, we put forward the Dynamic Resolution Vision Language Model (DynRsl-VLM). DynRsl-VLM incorporates a dynamic resolution image input processing approach that captures all entity feature information within an image while ensuring that the image input remains computationally tractable for the Vision Transformer (ViT). Moreover, we devise a novel image-text alignment module to replace the Q-Former, enabling simple and efficient alignment with text when dealing with dynamic resolution image inputs. Our method enhances the environmental perception capabilities of autonomous driving systems without overstepping computational constraints.
Abstract:Collecting and annotating medical images is a time-consuming and resource-intensive task. However, generating synthetic data through models such as Diffusion offers a cost-effective alternative. This paper introduces a new method for the automatic generation of accurate semantic masks from synthetic lung X-ray images based on a stable diffusion model trained on text-image pairs. This method uses cross-attention mapping between text and image to extend text-driven image synthesis to semantic mask generation. It employs text-guided cross-attention information to identify specific areas in an image and combines this with innovative techniques to produce high-resolution, class-differentiated pixel masks. This approach significantly reduces the costs associated with data collection and annotation. The experimental results demonstrate that segmentation models trained on synthetic data generated using the method are comparable to, and in some cases even better than, models trained on real datasets. This shows the effectiveness of the method and its potential to revolutionize medical image analysis.
Abstract:The goal of incremental Few-shot Semantic Segmentation (iFSS) is to extend pre-trained segmentation models to new classes via few annotated images without access to old training data. During incrementally learning novel classes, the data distribution of old classes will be destroyed, leading to catastrophic forgetting. Meanwhile, the novel classes have only few samples, making models impossible to learn the satisfying representations of novel classes. For the iFSS problem, we propose a network called OINet, i.e., the background embedding space \textbf{O}rganization and prototype \textbf{I}nherit Network. Specifically, when training base classes, OINet uses multiple classification heads for the background and sets multiple sub-class prototypes to reserve embedding space for the latent novel classes. During incrementally learning novel classes, we propose a strategy to select the sub-class prototypes that best match the current learning novel classes and make the novel classes inherit the selected prototypes' embedding space. This operation allows the novel classes to be registered in the embedding space using few samples without affecting the distribution of the base classes. Results on Pascal-VOC and COCO show that OINet achieves a new state of the art.
Abstract:Deep learning-based information processing consumes long time and requires huge computing resources, especially for dense prediction tasks which require an output for each pixel, like semantic segmentation and salient object detection. There are mainly two challenges for quantization of dense prediction tasks. Firstly, directly applying the upsampling operation that dense prediction tasks require is extremely crude and causes unacceptable accuracy reduction. Secondly, the complex structure of dense prediction networks means it is difficult to maintain a fast speed as well as a high accuracy when performing quantization. In this paper, we propose an effective upsampling method and an efficient attention computation strategy to transfer the success of the binary neural networks (BNN) from single prediction tasks to dense prediction tasks. Firstly, we design a simple and robust multi-branch parallel upsampling structure to achieve the high accuracy. Then we further optimize the attention method which plays an important role in segmentation but has huge computation complexity. Our attention method can reduce the computational complexity by a factor of one hundred times but retain the original effect. Experiments on Cityscapes, KITTI road, and ECSSD fully show the effectiveness of our work.
Abstract:Semantic segmentation requires pixel-level annotation, which is time-consuming. Active Learning (AL) is a promising method for reducing data annotation costs. Due to the gap between aerial and natural images, the previous AL methods are not ideal, mainly caused by unreasonable labeling units and the neglect of class imbalance. Previous labeling units are based on images or regions, which does not consider the characteristics of segmentation tasks and aerial images, i.e., the segmentation network often makes mistakes in the edge region, and the edge of aerial images is often interlaced and irregular. Therefore, an edge-guided labeling unit is proposed and supplemented as the new unit. On the other hand, the class imbalance is severe, manifested in two aspects: the aerial image is seriously imbalanced, and the AL strategy does not fully consider the class balance. Both seriously affect the performance of AL in aerial images. We comprehensively ensure class balance from all steps that may occur imbalance, including initial labeled data, subsequent labeled data, and pseudo-labels. Through the two improvements, our method achieves more than 11.2\% gains compared to state-of-the-art methods on three benchmark datasets, Deepglobe, Potsdam, and Vaihingen, and more than 18.6\% gains compared to the baseline. Sufficient ablation studies show that every module is indispensable. Furthermore, we establish a fair and strong benchmark for future research on AL for aerial image segmentation.
Abstract:Lifelong learning aims to train a model with good performance for new tasks while retaining the capacity of previous tasks. However, some practical scenarios require the system to forget undesirable knowledge due to privacy issues, which is called selective forgetting. The joint task of the two is dubbed Learning with Selective Forgetting (LSF). In this paper, we propose a new framework based on contrastive strategy for LSF. Specifically, for the preserved classes (tasks), we make features extracted from different samples within a same class compacted. And for the deleted classes, we make the features from different samples of a same class dispersed and irregular, i.e., the network does not have any regular response to samples from a specific deleted class as if the network has no training at all. Through maintaining or disturbing the feature distribution, the forgetting and memory of different classes can be or independent of each other. Experiments are conducted on four benchmark datasets, and our method acieves new state-of-the-art.