Abstract:Recent advances in deep learning have greatly propelled the research on semantic parsing. Improvement has since been made in many downstream tasks, including natural language interface to web APIs, text-to-SQL generation, among others. However, despite the close connection shared with these tasks, research on question answering over knowledge bases (KBQA) has comparatively been progressing slowly. We identify and attribute this to two unique challenges of KBQA, schema-level complexity and fact-level complexity. In this survey, we situate KBQA in the broader literature of semantic parsing and give a comprehensive account of how existing KBQA approaches attempt to address the unique challenges. Regardless of the unique challenges, we argue that we can still take much inspiration from the literature of semantic parsing, which has been overlooked by existing research on KBQA. Based on our discussion, we can better understand the bottleneck of current KBQA research and shed light on promising directions for KBQA to keep up with the literature of semantic parsing, particularly in the era of pre-trained language models.
Abstract:With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{https://shaunyuan22.github.io/SODA}.
Abstract:A trending paradigm for multiple-choice question answering (MCQA) is using a text-to-text framework. By unifying data in different tasks into a single text-to-text format, it trains a generative encoder-decoder model which is both powerful and universal. However, a side effect of twisting a generation target to fit the classification nature of MCQA is the under-utilization of the decoder and the knowledge that can be decoded. To exploit the generation capability and underlying knowledge of a pre-trained encoder-decoder model, in this paper, we propose a generation-enhanced MCQA model named GenMC. It generates a clue from the question and then leverages the clue to enhance a reader for MCQA. It outperforms text-to-text models on multiple MCQA datasets.
Abstract:Few-shot segmentation, which aims to segment unseen-class objects given only a handful of densely labeled samples, has received widespread attention from the community. Existing approaches typically follow the prototype learning paradigm to perform meta-inference, which fails to fully exploit the underlying information from support image-mask pairs, resulting in various segmentation failures, e.g., incomplete objects, ambiguous boundaries, and distractor activation. To this end, we propose a simple yet versatile framework in the spirit of divide-and-conquer. Specifically, a novel self-reasoning scheme is first implemented on the annotated support image, and then the coarse segmentation mask is divided into multiple regions with different properties. Leveraging effective masked average pooling operations, a series of support-induced proxies are thus derived, each playing a specific role in conquering the above challenges. Moreover, we devise a unique parallel decoder structure that integrates proxies with similar attributes to boost the discrimination power. Our proposed approach, named divide-and-conquer proxies (DCP), allows for the development of appropriate and reliable information as a guide at the "episode" level, not just about the object cues themselves. Extensive experiments on PASCAL-5i and COCO-20i demonstrate the superiority of DCP over conventional prototype-based approaches (up to 5~10% on average), which also establishes a new state-of-the-art. Code is available at github.com/chunbolang/DCP.
Abstract:Recently few-shot segmentation (FSS) has been extensively developed. Most previous works strive to achieve generalization through the meta-learning framework derived from classification tasks; however, the trained models are biased towards the seen classes instead of being ideally class-agnostic, thus hindering the recognition of new concepts. This paper proposes a fresh and straightforward insight to alleviate the problem. Specifically, we apply an additional branch (base learner) to the conventional FSS model (meta learner) to explicitly identify the targets of base classes, i.e., the regions that do not need to be segmented. Then, the coarse results output by these two learners in parallel are adaptively integrated to yield precise segmentation prediction. Considering the sensitivity of meta learner, we further introduce an adjustment factor to estimate the scene differences between the input image pairs for facilitating the model ensemble forecasting. The substantial performance gains on PASCAL-5i and COCO-20i verify the effectiveness, and surprisingly, our versatile scheme sets a new state-of-the-art even with two plain learners. Moreover, in light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting, i.e., generalized FSS, where the pixels of both base and novel classes are required to be determined. The source code is available at github.com/chunbolang/BAM.
Abstract:Recent machine reading comprehension datasets such as ReClor and LogiQA require performing logical reasoning over text. Conventional neural models are insufficient for logical reasoning, while symbolic reasoners cannot directly apply to text. To meet the challenge, we present a neural-symbolic approach which, to predict an answer, passes messages over a graph representing logical relations between text units. It incorporates an adaptive logic graph network (AdaLoGN) which adaptively infers logical relations to extend the graph and, essentially, realizes mutual and iterative reinforcement between neural and symbolic reasoning. We also implement a novel subgraph-to-node message passing mechanism to enhance context-option interaction for answering multiple-choice questions. Our approach shows promising results on ReClor and LogiQA.
Abstract:In this paper, we reveal that metric learning would suffer from serious inseparable problem if without informative sample mining. Since the inseparable samples are often mixed with hard samples, current informative sample mining strategies used to deal with inseparable problem may bring up some side-effects, such as instability of objective function, etc. To alleviate this problem, we propose a novel distance metric learning algorithm, named adaptive neighborhood metric learning (ANML). In ANML, we design two thresholds to adaptively identify the inseparable similar and dissimilar samples in the training procedure, thus inseparable sample removing and metric parameter learning are implemented in the same procedure. Due to the non-continuity of the proposed ANML, we develop an ingenious function, named \emph{log-exp mean function} to construct a continuous formulation to surrogate it, which can be efficiently solved by the gradient descent method. Similar to Triplet loss, ANML can be used to learn both the linear and deep embeddings. By analyzing the proposed method, we find it has some interesting properties. For example, when ANML is used to learn the linear embedding, current famous metric learning algorithms such as the large margin nearest neighbor (LMNN) and neighbourhood components analysis (NCA) are the special cases of the proposed ANML by setting the parameters different values. When it is used to learn deep features, the state-of-the-art deep metric learning algorithms such as Triplet loss, Lifted structure loss, and Multi-similarity loss become the special cases of ANML. Furthermore, the \emph{log-exp mean function} proposed in our method gives a new perspective to review the deep metric learning methods such as Prox-NCA and N-pairs loss. At last, promising experimental results demonstrate the effectiveness of the proposed method.
Abstract:Given an aerial image, aerial scene parsing (ASP) targets to interpret the semantic structure of the image content, e.g., by assigning a semantic label to every pixel of the image. With the popularization of data-driven methods, the past decades have witnessed promising progress on ASP by approaching the problem with the schemes of tile-level scene classification or segmentation-based image analysis, when using high-resolution aerial images. However, the former scheme often produces results with tile-wise boundaries, while the latter one needs to handle the complex modeling process from pixels to semantics, which often requires large-scale and well-annotated image samples with pixel-wise semantic labels. In this paper, we address these issues in ASP, with perspectives from tile-level scene classification to pixel-wise semantic labeling. Specifically, we first revisit aerial image interpretation by a literature review. We then present a large-scale scene classification dataset that contains one million aerial images termed Million-AID. With the presented dataset, we also report benchmarking experiments using classical convolutional neural networks (CNNs). Finally, we perform ASP by unifying the tile-level scene classification and object-based image analysis to achieve pixel-wise semantic labeling. Intensive experiments show that Million-AID is a challenging yet useful dataset, which can serve as a benchmark for evaluating newly developed algorithms. When transferring knowledge from Million-AID, fine-tuning CNN models pretrained on Million-AID perform consistently better than those pretrained ImageNet for aerial scene classification. Moreover, our designed hierarchical multi-task learning method achieves the state-of-the-art pixel-wise classification on the challenging GID, bridging the tile-level scene classification toward pixel-wise semantic labeling for aerial image interpretation.
Abstract:Oriented object detection is a practical and challenging task in remote sensing image interpretation. Nowadays, oriented detectors mostly use horizontal boxes as intermedium to derive oriented boxes from them. However, the horizontal boxes are inclined to get a small Intersection-over-Unions (IoUs) with ground truths, which may have some undesirable effects, such as introducing redundant noise, mismatching with ground truths, detracting from the robustness of detectors, etc. In this paper, we propose a novel Anchor-free Oriented Proposal Generator (AOPG) that abandons the horizontal boxes-related operations from the network architecture. AOPG first produces coarse oriented boxes by Coarse Location Module (CLM) in an anchor-free manner and then refines them into high-quality oriented proposals. After AOPG, we apply a Fast R-CNN head to produce the final detection results. Furthermore, the shortage of large-scale datasets is also a hindrance to the development of oriented object detection. To alleviate the data insufficiency, we release a new dataset on the basis of our DIOR dataset and name it DIOR-R. Massive experiments demonstrate the effectiveness of AOPG. Particularly, without bells and whistles, we achieve the highest accuracy of 64.41$\%$, 75.24$\%$ and 96.22$\%$ mAP on the DIOR-R, DOTA and HRSC2016 datasets respectively. Code and models are available at https://github.com/jbwang1997/AOPG.
Abstract:Scenario-based question answering (SQA) requires retrieving and reading paragraphs from a large corpus to answer a question which is contextualized by a long scenario description. Since a scenario contains both keyphrases for retrieval and much noise, retrieval for SQA is extremely difficult. Moreover, it can hardly be supervised due to the lack of relevance labels of paragraphs for SQA. To meet the challenge, in this paper we propose a joint retriever-reader model called JEEVES where the retriever is implicitly supervised only using QA labels via a novel word weighting mechanism. JEEVES significantly outperforms a variety of strong baselines on multiple-choice questions in three SQA datasets.