the State Key Lab of Intelligent Control and Decision of Complex Systems and the School of Automation, Beijing Institute of Technology, Beijing, China, Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
Abstract:Most of the existing deep learning based image captioning methods are fully-supervised models, which require large-scale paired image-caption datasets. However, getting large scale image-caption paired data is labor-intensive and time-consuming. In this paper, we present a scene graph based approach for unpaired image captioning. Our framework comprises an image scene graph generator, a sentence scene graph generator, a scene graph encoder, and a sentence decoder. Specifically, we first train the scene graph encoder and the sentence decoder on the text modality. To align the scene graphs between images and sentences, we propose an unsupervised feature alignment method that maps the scene graph features from the image modality to the sentence modality without any paired data. Experimental results show that our proposed model can generate quite promising results without using any image-caption training pairs, outperforming existing methods by a wide margin.
Abstract:Action prediction is to recognize the class label of an ongoing activity when only a part of it is observed. In this paper, we focus on online action prediction in streaming 3D skeleton sequences. A dilated convolutional network is introduced to model the motion dynamics in temporal dimension via a sliding window over the temporal axis. Since there are significant temporal scale variations in the observed part of the ongoing action at different time steps, a novel window scale selection method is proposed to make our network focus on the performed part of the ongoing action and try to suppress the possible incoming interference from the previous actions at each step. An activation sharing scheme is also proposed to handle the overlapping computations among the adjacent time steps, which enables our framework to run more efficiently. Moreover, to enhance the performance of our framework for action prediction with the skeletal input data, a hierarchy of dilated tree convolutions are also designed to learn the multi-level structured semantic representations over the skeleton joints at each frame. Our proposed approach is evaluated on four challenging datasets. The extensive experiments demonstrate the effectiveness of our method for skeleton-based online action prediction.
Abstract:Caching is envisioned to play a critical role in next-generation content delivery infrastructure, cellular networks, and Internet architectures. By smartly storing the most popular contents at the storage-enabled network entities during off-peak demand instances, caching can benefit both network infrastructure as well as end users, during on-peak periods. In this context, distributing the limited storage capacity across network entities calls for decentralized caching schemes. Many practical caching systems involve a parent caching node connected to multiple leaf nodes to serve user file requests. To model the two-way interactive influence between caching decisions at the parent and leaf nodes, a reinforcement learning framework is put forth. To handle the large continuous state space, a scalable deep reinforcement learning approach is pursued. The novel approach relies on a deep Q-network to learn the Q-function, and thus the optimal caching policy, in an online fashion. Reinforcing the parent node with ability to learn-and-adapt to unknown policies of leaf nodes as well as spatio-temporal dynamic evolution of file requests, results in remarkable caching performance, as corroborated through numerical tests.
Abstract:It is a significant problem to predict the 2D LiDAR map at next moment for robotics navigation and path-planning. To tackle this problem, we resort to the motion flow between adjacent maps, as motion flow is a powerful tool to process and analyze the dynamic data, which is named optical flow in video processing. However, unlike video, which contains abundant visual features in each frame, a 2D LiDAR map lacks distinctive local features. To alleviate this challenge, we propose to estimate the motion flow based on deep neural networks inspired by its powerful representation learning ability in estimating the optical flow of the video. To this end, we design a recurrent neural network based on gated recurrent unit, which is named LiDAR-FlowNet. As a recurrent neural network can encode the temporal dynamic information, our LiDAR-FlowNet can estimate motion flow between the current map and the unknown next map only from the current frame and previous frames. A self-supervised strategy is further designed to train the LiDAR-FlowNet model effectively, while no training data need to be manually annotated. With the estimated motion flow, it is straightforward to predict the 2D LiDAR map at the next moment. Experimental results verify the effectiveness of our LiDAR-FlowNet as well as the proposed training strategy. The results of the predicted LiDAR map also show the advantages of our motion flow based method.
Abstract:In this paper, a feature boosting network is proposed for estimating 3D hand pose and 3D body pose from a single RGB image. In this method, the features learned by the convolutional layers are boosted with a new long short-term dependence-aware (LSTD) module, which enables the intermediate convolutional feature maps to perceive the graphical long short-term dependency among different hand (or body) parts using the designed Graphical ConvLSTM. Learning a set of features that are reliable and discriminatively representative of the pose of a hand (or body) part is difficult due to the ambiguities, texture and illumination variation, and self-occlusion in the real application of 3D pose estimation. To improve the reliability of the features for representing each body part and enhance the LSTD module, we further introduce a context consistency gate (CCG) in this paper, with which the convolutional feature maps are modulated according to their consistency with the context representations. We evaluate the proposed method on challenging benchmark datasets for 3D hand pose estimation and 3D full body pose estimation. Experimental results show the effectiveness of our method that achieves state-of-the-art performance on both of the tasks.
Abstract:Multiview canonical correlation analysis (MCCA) seeks latent low-dimensional representations encountered with multiview data of shared entities (a.k.a. common sources). However, existing MCCA approaches do not exploit the geometry of the common sources, which may be available \emph{a priori}, or can be constructed using certain domain knowledge. This prior information about the common sources can be encoded by a graph, and be invoked as a regularizer to enrich the maximum variance MCCA framework. In this context, the present paper's novel graph-regularized (G) MCCA approach minimizes the distance between the wanted canonical variables and the common low-dimensional representations, while accounting for graph-induced knowledge of the common sources. Relying on a function capturing the extent low-dimensional representations of the multiple views are similar, a generalization bound of GMCCA is established based on Rademacher's complexity. Tailored for setups where the number of data pairs is smaller than the data vector dimensions, a graph-regularized dual MCCA approach is also developed. To further deal with nonlinearities present in the data, graph-regularized kernel MCCA variants are put forward too. Interestingly, solutions of the graph-regularized linear, dual, and kernel MCCA, are all provided in terms of generalized eigenvalue decomposition. Several corroborating numerical tests using real datasets are provided to showcase the merits of the graph-regularized MCCA variants relative to several competing alternatives including MCCA, Laplacian-regularized MCCA, and (graph-regularized) PCA.
Abstract:Contemporary power grids are being challenged by rapid voltage fluctuations that are caused by large-scale deployment of renewable generation, electric vehicles, and demand response programs. In this context, monitoring the grid's operating conditions in real time becomes increasingly critical. With the emergent large scale and nonconvexity however, the existing power system state estimation (PSSE) schemes become computationally expensive or yield suboptimal performance. To bypass these hurdles, this paper advocates deep neural networks (DNNs) for real-time power system monitoring. By unrolling an iterative physics-based prox-linear solver, a novel model-specific DNN is developed for real-time PSSE with affordable training and minimal tuning effort. To further enable system awareness even ahead of the time horizon, as well as to endow the DNN-based estimator with resilience, deep recurrent neural networks (RNNs) are also pursued for power system state forecasting. Deep RNNs leverage the long-term nonlinear dependencies present in the historical voltage time series to enable forecasting, and they are easy to implement. Numerical tests showcase improved performance of the proposed DNN-based estimation and forecasting approaches compared with existing alternatives. In real load data experiments on the IEEE 118-bus benchmark system, the novel model-specific DNN-based PSSE scheme outperforms nearly by an order-of-magnitude the competing alternatives, including the widely adopted Gauss-Newton PSSE solver.
Abstract:Recurrent Neural Networks (RNNs) have been widely used in processing natural language tasks and achieve huge success. Traditional RNNs usually treat each token in a sentence uniformly and equally. However, this may miss the rich semantic structure information of a sentence, which is useful for understanding natural languages. Since semantic structures such as word dependence patterns are not parameterized, it is a challenge to capture and leverage structure information. In this paper, we propose an improved variant of RNN, Multi-Channel RNN (MC-RNN), to dynamically capture and leverage local semantic structure information. Concretely, MC-RNN contains multiple channels, each of which represents a local dependence pattern at a time. An attention mechanism is introduced to combine these patterns at each step, according to the semantic information. Then we parameterize structure information by adaptively selecting the most appropriate connection structures among channels. In this way, diverse local structures and dependence patterns in sentences can be well captured by MC-RNN. To verify the effectiveness of MC-RNN, we conduct extensive experiments on typical natural language processing tasks, including neural machine translation, abstractive summarization, and language modeling. Experimental results on these tasks all show significant improvements of MC-RNN over current top systems.
Abstract:Principal component analysis (PCA) is widely used for feature extraction and dimensionality reduction, with documented merits in diverse tasks involving high-dimensional data. Standard PCA copes with one dataset at a time, but it is challenged when it comes to analyzing multiple datasets jointly. In certain data science settings however, one is often interested in extracting the most discriminative information from one dataset of particular interest (a.k.a. target data) relative to the other(s) (a.k.a. background data). To this end, this paper puts forth a novel approach, termed discriminative (d) PCA, for such discriminative analytics of multiple datasets. Under certain conditions, dPCA is proved to be least-squares optimal in recovering the component vector unique to the target data relative to background data. To account for nonlinear data correlations, (linear) dPCA models for one or multiple background datasets are generalized through kernel-based learning. Interestingly, all dPCA variants admit an analytical solution obtainable with a single (generalized) eigenvalue decomposition. Finally, corroborating dimensionality reduction tests using both synthetic and real datasets are provided to validate the effectiveness of the proposed methods.
Abstract:Neural networks with ReLU activations have achieved great empirical success in various domains. However, existing results for learning ReLU networks either pose assumptions on the underlying data distribution being e.g. Gaussian, or require the network size and/or training size to be sufficiently large. In this context, the problem of learning a two-layer ReLU network is approached in a binary classification setting, where the data are linearly separable and a hinge loss criterion is adopted. Leveraging the power of random noise, this contribution presents a novel stochastic gradient descent (SGD) algorithm, which can provably train any single-hidden-layer ReLU network to attain global optimality, despite the presence of infinitely many bad local minima and saddle points in general. This result is the first of its kind, requiring no assumptions on the data distribution, training/network size, or initialization. Convergence of the resultant iterative algorithm to a global minimum is analyzed by establishing both an upper bound and a lower bound on the number of effective (non-zero) updates to be performed. Furthermore, generalization guarantees are developed for ReLU networks trained with the novel SGD. These guarantees highlight a fundamental difference (at least in the worst case) between learning a ReLU network as well as a leaky ReLU network in terms of sample complexity. Numerical tests using synthetic data and real images validate the effectiveness of the algorithm and the practical merits of the theory.