Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Gal Yona, Roee Aharoni, Mor Geva

Factual questions typically can be answered correctly at different levels of granularity. For example, both ``August 4, 1961'' and ``1961'' are correct answers to the question ``When was Barack Obama born?''. Standard question answering (QA) evaluation protocols, however, do not explicitly take this into account and compare a predicted answer against answers of a single granularity level. In this work, we propose GRANOLA QA, a novel evaluation setting where a predicted answer is evaluated in terms of accuracy and informativeness against a set of multi-granularity answers. We present a simple methodology for enriching existing datasets with multi-granularity answers, and create GRANOLA-EQ, a multi-granularity version of the EntityQuestions dataset. We evaluate a range of decoding methods on GRANOLA-EQ, including a new algorithm, called Decoding with Response Aggregation (DRAG), that is geared towards aligning the response granularity with the model's uncertainty. Our experiments show that large language models with standard decoding tend to generate specific answers, which are often incorrect. In contrast, when evaluated on multi-granularity answers, DRAG yields a nearly 20 point increase in accuracy on average, which further increases for rare entities. Overall, this reveals that standard evaluation and decoding schemes may significantly underestimate the knowledge encapsulated in LMs.

Via

Gal Yona, Or Honovich, Itay Laish, Roee Aharoni

Ensuring that large language models (LMs) are fair, robust and useful requires an understanding of how different modifications to their inputs impact the model's behaviour. In the context of open-text generation tasks, however, such an evaluation is not trivial. For example, when introducing a model with an input text and a perturbed, "contrastive" version of it, meaningful differences in the next-token predictions may not be revealed with standard decoding strategies. With this motivation in mind, we propose Contrastive Input Decoding (CID): a decoding algorithm to generate text given two inputs, where the generated text is likely given one input but unlikely given the other. In this way, the contrastive generations can highlight potentially subtle differences in how the LM output differs for the two inputs in a simple and interpretable manner. We use CID to highlight context-specific biases that are hard to detect with standard decoding strategies and quantify the effect of different input perturbations.

Via

Yoav Wald, Gal Yona, Uri Shalit, Yair Carmon

Learned classifiers should often possess certain invariance properties meant to encourage fairness, robustness, or out-of-distribution generalization. However, multiple recent works empirically demonstrate that common invariance-inducing regularizers are ineffective in the over-parameterized regime, in which classifiers perfectly fit (i.e. interpolate) the training data. This suggests that the phenomenon of ``benign overfitting," in which models generalize well despite interpolating, might not favorably extend to settings in which robustness or fairness are desirable. In this work we provide a theoretical justification for these observations. We prove that -- even in the simplest of settings -- any interpolating learning rule (with arbitrarily small margin) will not satisfy these invariance properties. We then propose and analyze an algorithm that -- in the same setting -- successfully learns a non-interpolating classifier that is provably invariant. We validate our theoretical observations on simulated data and the Waterbirds dataset.

Via

Gal Yona, Amir Feder, Itay Laish

An important component in deploying machine learning (ML) in safety-critic applications is having a reliable measure of confidence in the ML model's predictions. For a classifier $f$ producing a probability vector $f(x)$ over the candidate classes, the confidence is typically taken to be $\max_i f(x)_i$. This approach is potentially limited, as it disregards the rest of the probability vector. In this work, we derive several confidence measures that depend on information beyond the maximum score, such as margin-based and entropy-based measures, and empirically evaluate their usefulness, focusing on NLP tasks with distribution shifts and Transformer-based models. We show that when models are evaluated on the out-of-distribution data ``out of the box'', using only the maximum score to inform the confidence measure is highly suboptimal. In the post-processing regime (where the scores of $f$ can be improved using additional in-distribution held-out data), this remains true, albeit less significant. Overall, our results suggest that entropy-based confidence is a surprisingly useful measure.

Via

Gal Yona, Shay Moran, Gal Elidan, Amir Globerson

Supervised learning typically relies on manual annotation of the true labels. When there are many potential classes, searching for the best one can be prohibitive for a human annotator. On the other hand, comparing two candidate labels is often much easier. We focus on this type of pairwise supervision and ask how it can be used effectively in learning, and in particular in active learning. We obtain several insightful results in this context. In principle, finding the best of $k$ labels can be done with $k-1$ active queries. We show that there is a natural class where this approach is sub-optimal, and that there is a more comparison-efficient active learning scheme. A key element in our analysis is the "label neighborhood graph" of the true distribution, which has an edge between two classes if they share a decision boundary. We also show that in the PAC setting, pairwise comparisons cannot provide improved sample complexity in the worst case. We complement our theoretical results with experiments, clearly demonstrating the effect of the neighborhood graph on sample complexity.

Via

Guy N. Rothblum, Gal Yona

ML-based predictions are used to inform consequential decisions about individuals. How should we use predictions (e.g., risk of heart attack) to inform downstream binary classification decisions (e.g., undergoing a medical procedure)? When the risk estimates are perfectly calibrated, the answer is well understood: a classification problem's cost structure induces an optimal treatment threshold $j^{\star}$. In practice, however, some amount of miscalibration is unavoidable, raising a fundamental question: how should one use potentially miscalibrated predictions to inform binary decisions? We formalize a natural (distribution-free) solution concept: given anticipated miscalibration of $\alpha$, we propose using the threshold $j$ that minimizes the worst-case regret over all $\alpha$-miscalibrated predictors, where the regret is the difference in clinical utility between using the threshold in question and using the optimal threshold in hindsight. We provide closed form expressions for $j$ when miscalibration is measured using both expected and maximum calibration error, which reveal that it indeed differs from $j^{\star}$ (the optimal threshold under perfect calibration). We validate our theoretical findings on real data, demonstrating that there are natural cases in which making decisions using $j$ improves the clinical utility.

Via

Gal Yona, Daniel Greenfeld

Saliency methods are a popular approach for model debugging and explainability. However, in the absence of ground-truth data for what the correct maps should be, evaluating and comparing different approaches remains a long-standing challenge. The sanity checks methodology of Adebayo et al [Neurips 2018] has sought to address this challenge. They argue that some popular saliency methods should not be used for explainability purposes since the maps they produce are not sensitive to the underlying model that is to be explained. Through a causal re-framing of their objective, we argue that their empirical evaluation does not fully establish these conclusions, due to a form of confounding introduced by the tasks they evaluate on. Through various experiments on simple custom tasks we demonstrate that some of their conclusions may indeed be artifacts of the tasks more than a criticism of the saliency methods themselves. More broadly, our work challenges the utility of the sanity check methodology, and further highlights that saliency map evaluation beyond ad-hoc visual examination remains a fundamental challenge.

Via

Guy N. Rothblum, Gal Yona

In many machine learning settings there is an inherent tension between fairness and accuracy desiderata. How should one proceed in light of such trade-offs? In this work we introduce and study $\gamma$-disqualification, a new framework for reasoning about fairness-accuracy tradeoffs w.r.t a benchmark class $H$ in the context of supervised learning. Our requirement stipulates that a classifier should be disqualified if it is possible to improve its fairness by switching to another classifier from $H$ without paying "too much" in accuracy. The notion of "too much" is quantified via a parameter $\gamma$ that serves as a vehicle for specifying acceptable tradeoffs between accuracy and fairness, in a way that is independent from the specific metrics used to quantify fairness and accuracy in a given task. Towards this objective, we establish principled translations between units of accuracy and units of (un)fairness for different accuracy measures. We show $\gamma$-disqualification can be used to easily compare different learning strategies in terms of how they trade-off fairness and accuracy, and we give an efficient reduction from the problem of finding the optimal classifier that satisfies our requirement to the problem of approximating the Pareto frontier of $H$.

Via

Guy N Rothblum, Gal Yona

An agnostic PAC learning algorithm finds a predictor that is competitive with the best predictor in a benchmark hypothesis class, where competitiveness is measured with respect to a given loss function. However, its predictions might be quite sub-optimal for structured subgroups of individuals, such as protected demographic groups. Motivated by such fairness concerns, we study "multi-group agnostic PAC learnability": fixing a measure of loss, a benchmark class $\H$ and a (potentially) rich collection of subgroups $\G$, the objective is to learn a single predictor such that the loss experienced by every group $g \in \G$ is not much larger than the best possible loss for this group within $\H$. Under natural conditions, we provide a characterization of the loss functions for which such a predictor is guaranteed to exist. For any such loss function we construct a learning algorithm whose sample complexity is logarithmic in the size of the collection $\G$. Our results unify and extend previous positive and negative results from the multi-group fairness literature, which applied for specific loss functions.

Via

Cynthia Dwork, Michael P. Kim, Omer Reingold, Guy N. Rothblum, Gal Yona

Prediction algorithms assign numbers to individuals that are popularly understood as individual "probabilities" -- what is the probability of 5-year survival after cancer diagnosis? -- and which increasingly form the basis for life-altering decisions. Drawing on an understanding of computational indistinguishability developed in complexity theory and cryptography, we introduce Outcome Indistinguishability. Predictors that are Outcome Indistinguishable yield a generative model for outcomes that cannot be efficiently refuted on the basis of the real-life observations produced by Nature. We investigate a hierarchy of Outcome Indistinguishability definitions, whose stringency increases with the degree to which distinguishers may access the predictor in question. Our findings reveal that Outcome Indistinguishability behaves qualitatively differently than previously studied notions of indistinguishability. First, we provide constructions at all levels of the hierarchy. Then, leveraging recently-developed machinery for proving average-case fine-grained hardness, we obtain lower bounds on the complexity of the more stringent forms of Outcome Indistinguishability. This hardness result provides the first scientific grounds for the political argument that, when inspecting algorithmic risk prediction instruments, auditors should be granted oracle access to the algorithm, not simply historical predictions.

Via