Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Freek Stulp

Freek Stulp

Ecole Nationale Superieure de Techniques Avancees

Generalized State-Dependent Exploration for Deep Reinforcement Learning in Robotics


May 12, 2020
Antonin Raffin, Freek Stulp

* Code: https://github.com/DLR-RM/stable-baselines3/tree/sde Training scripts: https://github.com/DLR-RM/rl-baselines3-zoo/tree/sde 

  Access Paper or Ask Questions

Comparing Semi-Parametric Model Learning Algorithms for Dynamic Model Estimation in Robotics


Jun 27, 2019
Sebastian Riedel, Freek Stulp


  Access Paper or Ask Questions

Investigating Generalisation in Continuous Deep Reinforcement Learning


Feb 20, 2019
Chenyang Zhao, Olivier Sigaud, Freek Stulp, Timothy M. Hospedales


  Access Paper or Ask Questions

Policy Search in Continuous Action Domains: an Overview


Oct 23, 2018
Olivier Sigaud, Freek Stulp

* Under revision for the Neural Networks Journal 

  Access Paper or Ask Questions

A survey on policy search algorithms for learning robot controllers in a handful of trials


Aug 03, 2018
Konstantinos Chatzilygeroudis, Vassilis Vassiliades, Freek Stulp, Sylvain Calinon, Jean-Baptiste Mouret


  Access Paper or Ask Questions

Proximodistal Exploration in Motor Learning as an Emergent Property of Optimization


Dec 14, 2017
Freek Stulp, Pierre-Yves Oudeyer


  Access Paper or Ask Questions

Gated networks: an inventory


Dec 10, 2015
Olivier Sigaud, Clément Masson, David Filliat, Freek Stulp

* Unpublished manuscript, 17 pages 

  Access Paper or Ask Questions

Learning and Reasoning with Action-Related Places for Robust Mobile Manipulation


Jan 18, 2014
Freek Stulp, Andreas Fedrizzi, Lorenz Mösenlechner, Michael Beetz

* Journal Of Artificial Intelligence Research, Volume 43, pages 1-42, 2012 

  Access Paper or Ask Questions

Path Integral Policy Improvement with Covariance Matrix Adaptation


Jun 18, 2012
Freek Stulp, Olivier Sigaud

* ICML2012 

  Access Paper or Ask Questions