Alert button
Picture for Fernando Acero

Fernando Acero

Alert button

Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization

Add code
Bookmark button
Alert button
Mar 25, 2024
Fernando Acero, Parisa Zehtabi, Nicolas Marchesotti, Michael Cashmore, Daniele Magazzeni, Manuela Veloso

Viaarxiv icon

Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression

Add code
Bookmark button
Alert button
Mar 21, 2024
Fernando Acero, Zhibin Li

Figure 1 for Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression
Figure 2 for Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression
Figure 3 for Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression
Figure 4 for Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression
Viaarxiv icon

Modular Neural Network Policies for Learning In-Flight Object Catching with a Robot Hand-Arm System

Add code
Bookmark button
Alert button
Dec 21, 2023
Wenbin Hu, Fernando Acero, Eleftherios Triantafyllidis, Zhaocheng Liu, Zhibin Li

Viaarxiv icon

RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid Hierarchical Learning for Solving Complex Sequential Tasks

Add code
Bookmark button
Alert button
Jul 07, 2023
Eleftherios Triantafyllidis, Fernando Acero, Zhaocheng Liu, Zhibin Li

Figure 1 for RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Figure 2 for RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Figure 3 for RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Figure 4 for RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Viaarxiv icon

RObotic MAnipulation Network (ROMAN) -- Hybrid Hierarchical Learning for Solving Complex Sequential Tasks

Add code
Bookmark button
Alert button
Jun 30, 2023
Eleftherios Triantafyllidis, Fernando Acero, Zhaocheng Liu, Zhibin Li

Figure 1 for RObotic MAnipulation Network (ROMAN) -- Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Figure 2 for RObotic MAnipulation Network (ROMAN) -- Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Figure 3 for RObotic MAnipulation Network (ROMAN) -- Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Figure 4 for RObotic MAnipulation Network (ROMAN) -- Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Viaarxiv icon

Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory

Add code
Bookmark button
Alert button
Jun 08, 2023
Daniel C. H. Tan, Fernando Acero, Robert McCarthy, Dimitrios Kanoulas, Zhibin Li

Figure 1 for Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory
Figure 2 for Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory
Figure 3 for Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory
Figure 4 for Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory
Viaarxiv icon

Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual Observations

Add code
Bookmark button
Alert button
Sep 28, 2021
Fernando Acero, Kai Yuan, Zhibin Li

Figure 1 for Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual Observations
Figure 2 for Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual Observations
Figure 3 for Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual Observations
Figure 4 for Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual Observations
Viaarxiv icon

Learning Vision-Guided Dynamic Locomotion Over Challenging Terrains

Add code
Bookmark button
Alert button
Sep 09, 2021
Zhaocheng Liu, Fernando Acero, Zhibin Li

Figure 1 for Learning Vision-Guided Dynamic Locomotion Over Challenging Terrains
Figure 2 for Learning Vision-Guided Dynamic Locomotion Over Challenging Terrains
Figure 3 for Learning Vision-Guided Dynamic Locomotion Over Challenging Terrains
Figure 4 for Learning Vision-Guided Dynamic Locomotion Over Challenging Terrains
Viaarxiv icon