Real-world data is extremely imbalanced and presents a long-tailed distribution, resulting in models that are biased towards classes with sufficient samples and perform poorly on rare classes. Recent methods propose to rebalance classes but they undertake the seesaw dilemma (what is increasing performance on tail classes may decrease that of head classes, and vice versa). In this paper, we argue that the seesaw dilemma is derived from gradient imbalance of different classes, in which gradients of inappropriate classes are set to important for updating, thus are prone to overcompensation or undercompensation on tail classes. To achieve ideal compensation, we formulate the long-tailed recognition as an multi-objective optimization problem, which fairly respects the contributions of head and tail classes simultaneously. For efficiency, we propose a Gradient-Balancing Grouping (GBG) strategy to gather the classes with similar gradient directions, thus approximately make every update under a Pareto descent direction. Our GBG method drives classes with similar gradient directions to form more representative gradient and provide ideal compensation to the tail classes. Moreover, We conduct extensive experiments on commonly used benchmarks in long-tailed learning and demonstrate the superiority of our method over existing SOTA methods.
Deep neural networks are vulnerable to adversarial examples crafted by applying human-imperceptible perturbations on clean inputs. Although many attack methods can achieve high success rates in the white-box setting, they also exhibit weak transferability in the black-box setting. Recently, various methods have been proposed to improve adversarial transferability, in which the input transformation is one of the most effective methods. In this work, we notice that existing input transformation-based works mainly adopt the transformed data in the same domain for augmentation. Inspired by domain generalization, we aim to further improve the transferability using the data augmented from different domains. Specifically, a style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans. Hence, we propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains. To avoid inconsistent semantic information of stylized images for the classification network, we fine-tune the style transfer network and mix up the generated images added by random noise with the original images to maintain semantic consistency and boost input diversity. Extensive experimental results on the ImageNet-compatible dataset show that our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models than state-of-the-art input transformation-based attacks. Code is available at: https://github.com/Zhijin-Ge/STM.
Transfer-based attack adopts the adversarial examples generated on the surrogate model to attack various models, making it applicable in the physical world and attracting increasing interest. Recently, various adversarial attacks have emerged to boost adversarial transferability from different perspectives. In this work, inspired by the fact that flat local minima are correlated with good generalization, we assume and empirically validate that adversarial examples at a flat local region tend to have good transferability by introducing a penalized gradient norm to the original loss function. Since directly optimizing the gradient regularization norm is computationally expensive and intractable for generating adversarial examples, we propose an approximation optimization method to simplify the gradient update of the objective function. Specifically, we randomly sample an example and adopt the first-order gradient to approximate the second-order Hessian matrix, which makes computing more efficient by interpolating two Jacobian matrices. Meanwhile, in order to obtain a more stable gradient direction, we randomly sample multiple examples and average the gradients of these examples to reduce the variance due to random sampling during the iterative process. Extensive experimental results on the ImageNet-compatible dataset show that the proposed method can generate adversarial examples at flat local regions, and significantly improve the adversarial transferability on either normally trained models or adversarially trained models than the state-of-the-art attacks.
Continual Learning (CL) sequentially learns new tasks like human beings, with the goal to achieve better Stability (S, remembering past tasks) and Plasticity (P, adapting to new tasks). Due to the fact that past training data is not available, it is valuable to explore the influence difference on S and P among training examples, which may improve the learning pattern towards better SP. Inspired by Influence Function (IF), we first study example influence via adding perturbation to example weight and computing the influence derivation. To avoid the storage and calculation burden of Hessian inverse in neural networks, we propose a simple yet effective MetaSP algorithm to simulate the two key steps in the computation of IF and obtain the S- and P-aware example influence. Moreover, we propose to fuse two kinds of example influence by solving a dual-objective optimization problem, and obtain a fused influence towards SP Pareto optimality. The fused influence can be used to control the update of model and optimize the storage of rehearsal. Empirical results show that our algorithm significantly outperforms state-of-the-art methods on both task- and class-incremental benchmark CL datasets.
Federated Learning (FL) has become an active and promising distributed machine learning paradigm. As a result of statistical heterogeneity, recent studies clearly show that the performance of popular FL methods (e.g., FedAvg) deteriorates dramatically due to the client drift caused by local updates. This paper proposes a novel Federated Learning algorithm (called IGFL), which leverages both Individual and Group behaviors to mimic distribution, thereby improving the ability to deal with heterogeneity. Unlike existing FL methods, our IGFL can be applied to both client and server optimization. As a by-product, we propose a new attention-based federated learning in the server optimization of IGFL. To the best of our knowledge, this is the first time to incorporate attention mechanisms into federated optimization. We conduct extensive experiments and show that IGFL can significantly improve the performance of existing federated learning methods. Especially when the distributions of data among individuals are diverse, IGFL can improve the classification accuracy by about 13% compared with prior baselines.
Recently, the study on learned iterative shrinkage thresholding algorithm (LISTA) has attracted increasing attentions. A large number of experiments as well as some theories have proved the high efficiency of LISTA for solving sparse coding problems. However, existing LISTA methods are all serial connection. To address this issue, we propose a novel extragradient based LISTA (ELISTA), which has a residual structure and theoretical guarantees. In particular, our algorithm can also provide the interpretability for Res-Net to a certain extent. From a theoretical perspective, we prove that our method attains linear convergence. In practice, extensive empirical results verify the advantages of our method.
The training of deep neural networks (DNNs) always requires intensive resources for both computation and data storage. Thus, DNNs cannot be efficiently applied to mobile phones and embedded devices, which severely limits their applicability in industrial applications. To address this issue, we propose a novel encoding scheme using {-1, +1} to decompose quantized neural networks (QNNs) into multi-branch binary networks, which can be efficiently implemented by bitwise operations (i.e., xnor and bitcount) to achieve model compression, computational acceleration, and resource saving. By using our method, users can achieve different encoding precisions arbitrarily according to their requirements and hardware resources. The proposed mechanism is highly suitable for the use of FPGA and ASIC in terms of data storage and computation, which provides a feasible idea for smart chips. We validate the effectiveness of our method on large-scale image classification (e.g., ImageNet), object detection, and semantic segmentation tasks. In particular, our method with low-bit encoding can still achieve almost the same performance as its high-bit counterparts.
Video super-resolution (VSR) aims at restoring a video in low-resolution (LR) and improving it to higher-resolution (HR). Due to the characteristics of video tasks, it is very important that motion information among frames should be well concerned, summarized and utilized for guidance in a VSR algorithm. Especially, when a video contains large motion, conventional methods easily bring incoherent results or artifacts. In this paper, we propose a novel deep neural network with Dual Subnet and Multi-stage Communicated Upsampling (DSMC) for super-resolution of videos with large motion. We design a new module named U-shaped residual dense network with 3D convolution (U3D-RDN) for fine implicit motion estimation and motion compensation (MEMC) as well as coarse spatial feature extraction. And we present a new Multi-Stage Communicated Upsampling (MSCU) module to make full use of the intermediate results of upsampling for guiding the VSR. Moreover, a novel dual subnet is devised to aid the training of our DSMC, whose dual loss helps to reduce the solution space as well as enhance the generalization ability. Our experimental results confirm that our method achieves superior performance on videos with large motion compared to state-of-the-art methods.
Model quantization can reduce the model size and computational latency, it has become an essential technique for the deployment of deep neural networks on resourceconstrained hardware (e.g., mobile phones and embedded devices). The existing quantization methods mainly consider the numerical elements of the weights and activation values, ignoring the relationship between elements. The decline of representation ability and information loss usually lead to the performance degradation. Inspired by the characteristics of images in the frequency domain, we propose a novel multiscale wavelet quantization (MWQ) method. This method decomposes original data into multiscale frequency components by wavelet transform, and then quantizes the components of different scales, respectively. It exploits the multiscale frequency and spatial information to alleviate the information loss caused by quantization in the spatial domain. Because of the flexibility of MWQ, we demonstrate three applications (e.g., model compression, quantized network optimization, and information enhancement) on the ImageNet and COCO datasets. Experimental results show that our method has stronger representation ability and can play an effective role in quantized neural networks.
Since model quantization helps to reduce the model size and computation latency, it has been successfully applied in many applications of mobile phones, embedded devices and smart chips. The mixed-precision quantization model can match different quantization bit-precisions according to the sensitivity of different layers to achieve great performance. However, it is a difficult problem to quickly determine the quantization bit-precision of each layer in deep neural networks according to some constraints (e.g., hardware resources, energy consumption, model size and computation latency). To address this issue, we propose a novel sequential single path search (SSPS) method for mixed-precision quantization,in which the given constraints are introduced into its loss function to guide searching process. A single path search cell is used to combine a fully differentiable supernet, which can be optimized by gradient-based algorithms. Moreover, we sequentially determine the candidate precisions according to the selection certainties to exponentially reduce the search space and speed up the convergence of searching process. Experiments show that our method can efficiently search the mixed-precision models for different architectures (e.g., ResNet-20, 18, 34, 50 and MobileNet-V2) and datasets (e.g., CIFAR-10, ImageNet and COCO) under given constraints, and our experimental results verify that SSPS significantly outperforms their uniform counterparts.