Abstract:Fine-tuning Large Language Models (LLMs) on specific datasets is a common practice to improve performance on target tasks. However, this performance gain often leads to overfitting, where the model becomes too specialized in either the task or the characteristics of the training data, resulting in a loss of generalization. This paper introduces Selective Self-Rehearsal (SSR), a fine-tuning approach that achieves performance comparable to the standard supervised fine-tuning (SFT) while improving generalization. SSR leverages the fact that there can be multiple valid responses to a query. By utilizing the model's correct responses, SSR reduces model specialization during the fine-tuning stage. SSR first identifies the correct model responses from the training set by deploying an appropriate LLM as a judge. Then, it fine-tunes the model using the correct model responses and the gold response for the remaining samples. The effectiveness of SSR is demonstrated through experiments on the task of identifying unanswerable queries across various datasets. The results show that standard SFT can lead to an average performance drop of up to $16.7\%$ on multiple benchmarks, such as MMLU and TruthfulQA. In contrast, SSR results in close to $2\%$ drop on average, indicating better generalization capabilities compared to standard SFT.
Abstract:Large language models (LLMs) have recently shown tremendous promise in serving as the backbone to agentic systems, as demonstrated by their performance in multi-faceted, challenging benchmarks like SWE-Bench and Agent-Bench. However, to realize the true potential of LLMs as autonomous agents, they must learn to identify, call, and interact with external tools and application program interfaces (APIs) to complete complex tasks. These tasks together are termed function calling. Endowing LLMs with function calling abilities leads to a myriad of advantages, such as access to current and domain-specific information in databases and knowledge sources, and the ability to outsource tasks that can be reliably performed by tools, e.g., a Python interpreter or calculator. While there has been significant progress in function calling with LLMs, there is still a dearth of open models that perform on par with proprietary LLMs like GPT, Claude, and Gemini. Therefore, in this work, we introduce the GRANITE-20B-FUNCTIONCALLING model under an Apache 2.0 license. The model is trained using a multi-task training approach on seven fundamental tasks encompassed in function calling, those being Nested Function Calling, Function Chaining, Parallel Functions, Function Name Detection, Parameter-Value Pair Detection, Next-Best Function, and Response Generation. We present a comprehensive evaluation on multiple out-of-domain datasets comparing GRANITE-20B-FUNCTIONCALLING to more than 15 other best proprietary and open models. GRANITE-20B-FUNCTIONCALLING provides the best performance among all open models on the Berkeley Function Calling Leaderboard and fourth overall. As a result of the diverse tasks and datasets used for training our model, we show that GRANITE-20B-FUNCTIONCALLING has better generalizability on multiple tasks in seven different evaluation datasets.
Abstract:Large language models (LLM) based end-to-end task-oriented dialog (TOD) systems built using few-shot (in-context) learning perform better than supervised models only when the train data is limited. This is due to the inherent ability of LLMs to learn any task with just a few demonstrations. As the number of train dialogs increases, supervised SoTA models surpass in-context learning LLMs as they learn to better align with the style of the system responses in the training data, which LLMs struggle to mimic. In response, we propose SyncTOD, which synergizes LLMs with useful hints about the task for improved alignment. At a high level, SyncTOD trains auxiliary models to provide these hints and select exemplars for the in-context prompts. With ChatGPT, SyncTOD achieves superior performance compared to LLM-based baselines and SoTA models in low-data settings, while retaining competitive performance in full-data settings
Abstract:Large Language models (LLMs) have demonstrated significant potential in transforming healthcare by automating tasks such as clinical documentation, information retrieval, and decision support. In this aspect, carefully engineered prompts have emerged as a powerful tool for using LLMs for medical scenarios, e.g., patient clinical scenarios. In this paper, we propose a modified version of the MedQA-USMLE dataset, which is subjective, to mimic real-life clinical scenarios. We explore the Chain of Thought (CoT) reasoning based on subjective response generation for the modified MedQA-USMLE dataset with appropriate LM-driven forward reasoning for correct responses to the medical questions. Keeping in mind the importance of response verification in the medical setting, we utilize a reward training mechanism whereby the language model also provides an appropriate verified response for a particular response to a clinical question. In this regard, we also include human-in-the-loop for different evaluation aspects. We develop better in-contrast learning strategies by modifying the 5-shot-codex-CoT-prompt from arXiv:2207.08143 for the subjective MedQA dataset and developing our incremental-reasoning prompt. Our evaluations show that the incremental reasoning prompt performs better than the modified codex prompt in certain scenarios. We also show that greedy decoding with the incremental reasoning method performs better than other strategies, such as prompt chaining and eliminative reasoning.
Abstract:Following the success of Proximal Policy Optimization (PPO) for Reinforcement Learning from Human Feedback (RLHF), new techniques such as Sequence Likelihood Calibration (SLiC) and Direct Policy Optimization (DPO) have been proposed that are offline in nature and use rewards in an indirect manner. These techniques, in particular DPO, have recently become the tools of choice for LLM alignment due to their scalability and performance. However, they leave behind important features of the PPO approach. Methods such as SLiC or RRHF make use of the Reward Model (RM) only for ranking/preference, losing fine-grained information and ignoring the parametric form of the RM (eg., Bradley-Terry, Plackett-Luce), while methods such as DPO do not use even a separate reward model. In this work, we propose a novel approach, named BRAIn, that re-introduces the RM as part of a distribution matching approach.BRAIn considers the LLM distribution conditioned on the assumption of output goodness and applies Bayes theorem to derive an intractable posterior distribution where the RM is explicitly represented. BRAIn then distills this posterior into an amortized inference network through self-normalized importance sampling, leading to a scalable offline algorithm that significantly outperforms prior art in summarization and AntropicHH tasks. BRAIn also has interesting connections to PPO and DPO for specific RM choices.
Abstract:Task-oriented dialog (TOD) agents often ground their responses on external knowledge bases (KBs). These KBs can be dynamic and may be updated frequently. Existing approaches for learning TOD agents assume the KB snapshot contemporary to each individual dialog is available during training. However, in real-world scenarios, only the latest KB snapshot is available during training and as a result, the train dialogs may contain facts conflicting with the latest KB. These dialog-KB inconsistencies in the training data may potentially confuse the TOD agent learning algorithm. In this work, we define the novel problem of learning a TOD agent with dialog-KB inconsistencies in the training data. We propose a Dialog-KB Arbitration Framework (DKAF) which reduces the dialog-KB inconsistencies by predicting the contemporary KB snapshot for each train dialog. These predicted KB snapshots are then used for training downstream TOD agents. As there are no existing datasets with dialog-KB inconsistencies, we systematically introduce inconsistencies in two publicly available dialog datasets. We show that TOD agents trained with DKAF perform better than existing baselines on both these datasets
Abstract:A major concern in using deep learning based generative models for document-grounded dialogs is the potential generation of responses that are not \textit{faithful} to the underlying document. Existing automated metrics used for evaluating the faithfulness of response with respect to the grounding document measure the degree of similarity between the generated response and the document's content. However, these automated metrics are far from being well aligned with human judgments. Therefore, to improve the measurement of faithfulness, we propose a new metric that utilizes (Conditional) Point-wise Mutual Information (PMI) between the generated response and the source document, conditioned on the dialogue. PMI quantifies the extent to which the document influences the generated response -- with a higher PMI indicating a more faithful response. We build upon this idea to create a new decoding technique that incorporates PMI into the response generation process to predict more faithful responses. Our experiments on the BEGIN benchmark demonstrate an improved correlation of our metric with human evaluation. We also show that our decoding technique is effective in generating more faithful responses when compared to standard decoding techniques on a set of publicly available document-grounded dialog datasets.
Abstract:Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured KB while information about aspects such as entrance ticket prices would always be available in documents. In this paper, we create a modified version of the MutliWOZ based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.
Abstract:This paper studies a novel reviewer-paper matching approach that was recently deployed in the 35th AAAI Conference on Artificial Intelligence (AAAI 2021), and has since been adopted by other conferences including AAAI 2022 and ICML 2022. This approach has three main elements: (1) collecting and processing input data to identify problematic matches and generate reviewer-paper scores; (2) formulating and solving an optimization problem to find good reviewer-paper matchings; and (3) the introduction of a novel, two-phase reviewing process that shifted reviewing resources away from papers likely to be rejected and towards papers closer to the decision boundary. This paper also describes an evaluation of these innovations based on an extensive post-hoc analysis on real data -- including a comparison with the matching algorithm used in AAAI's previous (2020) iteration -- and supplements this with additional numerical experimentation.
Abstract:End-to-End task-oriented dialogue systems generate responses based on dialog history and an accompanying knowledge base (KB). Inferring those KB entities that are most relevant for an utterance is crucial for response generation. Existing state of the art scales to large KBs by softly filtering over irrelevant KB information. In this paper, we propose a novel filtering technique that consists of (1) a pairwise similarity based filter that identifies relevant information by respecting the n-ary structure in a KB record. and, (2) an auxiliary loss that helps in separating contextually unrelated KB information. We also propose a new metric -- multiset entity F1 which fixes a correctness issue in the existing entity F1 metric. Experimental results on three publicly available task-oriented dialog datasets show that our proposed approach outperforms existing state-of-the-art models.