Abstract:Air traffic control (ATC) relies on communication via speech between pilot and air-traffic controller (ATCO). The call-sign, as unique identifier for each flight, is used to address a specific pilot by the ATCO. Extracting the call-sign from the communication is a challenge because of the noisy ATC voice channel and the additional noise introduced by the receiver. A low signal-to-noise ratio (SNR) in the speech leads to high word error rate (WER) transcripts. We propose a new call-sign recognition and understanding (CRU) system that addresses this issue. The recognizer is trained to identify call-signs in noisy ATC transcripts and convert them into the standard International Civil Aviation Organization (ICAO) format. By incorporating surveillance information, we can multiply the call-sign accuracy (CSA) up to a factor of four. The introduced data augmentation adds additional performance on high WER transcripts and allows the adaptation of the model to unseen airspaces.
Abstract:Many NLP models gain performance by having access to a knowledge base. A lot of research has been devoted to devising and improving the way the knowledge base is accessed and incorporated into the model, resulting in a number of mechanisms and pipelines. Despite the diversity of proposed mechanisms, there are patterns in the designs of such systems. In this paper, we systematically describe the typology of artefacts (items retrieved from a knowledge base), retrieval mechanisms and the way these artefacts are fused into the model. This further allows us to uncover combinations of design decisions that had not yet been tried. Most of the focus is given to language models, though we also show how question answering, fact-checking and knowledgable dialogue models fit into this system as well. Having an abstract model which can describe the architecture of specific models also helps with transferring these architectures between multiple NLP tasks.
Abstract:The field of natural language processing (NLP) has recently seen a large change towards using pre-trained language models for solving almost any task. Despite showing great improvements in benchmark datasets for various tasks, these models often perform sub-optimal in non-standard domains like the clinical domain where a large gap between pre-training documents and target documents is observed. In this paper, we aim at closing this gap with domain-specific training of the language model and we investigate its effect on a diverse set of downstream tasks and settings. We introduce the pre-trained CLIN-X (Clinical XLM-R) language models and show how CLIN-X outperforms other pre-trained transformer models by a large margin for ten clinical concept extraction tasks from two languages. In addition, we demonstrate how the transformer model can be further improved with our proposed task- and language-agnostic model architecture based on ensembles over random splits and cross-sentence context. Our studies in low-resource and transfer settings reveal stable model performance despite a lack of annotated data with improvements of up to 47 F1 points when only 250 labeled sentences are available. Our results highlight the importance of specialized language models as CLIN-X for concept extraction in non-standard domains, but also show that our task-agnostic model architecture is robust across the tested tasks and languages so that domain- or task-specific adaptations are not required.
Abstract:Even though most interfaces in the real world are discrete, no efficient way exists to train neural networks to make use of them, yet. We enhance an Interaction Network (a Reinforcement Learning architecture) with discrete interfaces and train it on the generalized Dyck language. This task requires an understanding of hierarchical structures to solve, and has long proven difficult for neural networks. We provide the first solution based on learning to use discrete data structures. We encountered unexpected anomalous behavior during training, and utilized pre-training based on execution traces to overcome them. The resulting model is very small and fast, and generalizes to sequences that are an entire order of magnitude longer than the training data.
Abstract:State-of-the-art deep learning methods achieve human-like performance on many tasks, but make errors nevertheless. Characterizing these errors in easily interpretable terms gives insight into whether a model is prone to making systematic errors, but also gives a way to act and improve the model. In this paper we propose a method that allows us to do so for arbitrary classifiers by mining a small set of patterns that together succinctly describe the input data that is partitioned according to correctness of prediction. We show this is an instance of the more general label description problem, which we formulate in terms of the Minimum Description Length principle. To discover good pattern sets we propose the efficient and hyperparameter-free Premise algorithm, which through an extensive set of experiments we show on both synthetic and real-world data performs very well in practice; unlike existing solutions it ably recovers ground truth patterns, even on highly imbalanced data over many unique items, or where patterns are only weakly associated to labels. Through two real-world case studies we confirm that Premise gives clear and actionable insight into the systematic errors made by modern NLP classifiers.
Abstract:How do neural networks "perceive" speech sounds from unknown languages? Does the typological similarity between the model's training language (L1) and an unknown language (L2) have an impact on the model representations of L2 speech signals? To answer these questions, we present a novel experimental design based on representational similarity analysis (RSA) to analyze acoustic word embeddings (AWEs) -- vector representations of variable-duration spoken-word segments. First, we train monolingual AWE models on seven Indo-European languages with various degrees of typological similarity. We then employ RSA to quantify the cross-lingual similarity by simulating native and non-native spoken-word processing using AWEs. Our experiments show that typological similarity indeed affects the representational similarity of the models in our study. We further discuss the implications of our work on modeling speech processing and language similarity with neural networks.
Abstract:Documents as short as a single sentence may inadvertently reveal sensitive information about their authors, including e.g. their gender or ethnicity. Style transfer is an effective way of transforming texts in order to remove any information that enables author profiling. However, for a number of current state-of-the-art approaches the improved privacy is accompanied by an undesirable drop in the down-stream utility of the transformed data. In this paper, we propose a simple, zero-shot way to effectively lower the risk of author profiling through multilingual back-translation using off-the-shelf translation models. We compare our models with five representative text style transfer models on three datasets across different domains. Results from both an automatic and a human evaluation show that our approach achieves the best overall performance while requiring no training data. We are able to lower the adversarial prediction of gender and race by up to $22\%$ while retaining $95\%$ of the original utility on downstream tasks.
Abstract:For most language combinations, parallel data is either scarce or simply unavailable. To address this, unsupervised machine translation (UMT) exploits large amounts of monolingual data by using synthetic data generation techniques such as back-translation and noising, while self-supervised NMT (SSNMT) identifies parallel sentences in smaller comparable data and trains on them. To date, the inclusion of UMT data generation techniques in SSNMT has not been investigated. We show that including UMT techniques into SSNMT significantly outperforms SSNMT and UMT on all tested language pairs, with improvements of up to +4.3 BLEU, +50.8 BLEU, +51.5 over SSNMT, statistical UMT and hybrid UMT, respectively, on Afrikaans to English. We further show that the combination of multilingual denoising autoencoding, SSNMT with backtranslation and bilingual finetuning enables us to learn machine translation even for distant language pairs for which only small amounts of monolingual data are available, e.g. yielding BLEU scores of 11.6 (English to Swahili).
Abstract:Listening in noisy environments can be difficult even for individuals with a normal hearing thresholds. The speech signal can be masked by noise, which may lead to word misperceptions on the side of the listener, and overall difficulty to understand the message. To mitigate hearing difficulties on listeners, a co-operative speaker utilizes voice modulation strategies like Lombard speech to generate noise-robust utterances, and similar solutions have been developed for speech synthesis systems. In this work, we propose an alternate solution of choosing noise-robust lexical paraphrases to represent an intended meaning. Our results show that lexical paraphrases differ in their intelligibility in noise. We evaluate the intelligibility of synonyms in context and find that choosing a lexical unit that is less risky to be misheard than its synonym introduced an average gain in comprehension of 37% at SNR -5 dB and 21% at SNR 0 dB for babble noise.
Abstract:Welcome to WeaSuL 2021, the First Workshop on Weakly Supervised Learning, co-located with ICLR 2021. In this workshop, we want to advance theory, methods and tools for allowing experts to express prior coded knowledge for automatic data annotations that can be used to train arbitrary deep neural networks for prediction. The ICLR 2021 Workshop on Weak Supervision aims at advancing methods that help modern machine-learning methods to generalize from knowledge provided by experts, in interaction with observable (unlabeled) data. In total, 15 papers were accepted. All the accepted contributions are listed in these Proceedings.