Abstract:Table structure recognition (TSR) aims at extracting tables in images into machine-understandable formats. Recent methods solve this problem by predicting the adjacency relations of detected cell boxes or learning to directly generate the corresponding markup sequences from the table images. However, existing approaches either count on additional heuristic rules to recover the table structures, or face challenges in capturing long-range dependencies within tables, resulting in increased complexity. In this paper, we propose an alternative paradigm. We model TSR as a logical location regression problem and propose a new TSR framework called LORE, standing for LOgical location REgression network, which for the first time regresses logical location as well as spatial location of table cells in a unified network. Our proposed LORE is conceptually simpler, easier to train, and more accurate than other paradigms of TSR. Moreover, inspired by the persuasive success of pre-trained models on a number of computer vision and natural language processing tasks, we propose two pre-training tasks to enrich the spatial and logical representations at the feature level of LORE, resulting in an upgraded version called LORE++. The incorporation of pre-training in LORE++ has proven to enjoy significant advantages, leading to a substantial enhancement in terms of accuracy, generalization, and few-shot capability compared to its predecessor. Experiments on standard benchmarks against methods of previous paradigms demonstrate the superiority of LORE++, which highlights the potential and promising prospect of the logical location regression paradigm for TSR.
Abstract:Automatic font generation is an imitation task, which aims to create a font library that mimics the style of reference images while preserving the content from source images. Although existing font generation methods have achieved satisfactory performance, they still struggle with complex characters and large style variations. To address these issues, we propose FontDiffuser, a diffusion-based image-to-image one-shot font generation method, which innovatively models the font imitation task as a noise-to-denoise paradigm. In our method, we introduce a Multi-scale Content Aggregation (MCA) block, which effectively combines global and local content cues across different scales, leading to enhanced preservation of intricate strokes of complex characters. Moreover, to better manage the large variations in style transfer, we propose a Style Contrastive Refinement (SCR) module, which is a novel structure for style representation learning. It utilizes a style extractor to disentangle styles from images, subsequently supervising the diffusion model via a meticulously designed style contrastive loss. Extensive experiments demonstrate FontDiffuser's state-of-the-art performance in generating diverse characters and styles. It consistently excels on complex characters and large style changes compared to previous methods. The code is available at https://github.com/yeungchenwa/FontDiffuser.
Abstract:In this report, we introduce DocXChain, a powerful open-source toolchain for document parsing, which is designed and developed to automatically convert the rich information embodied in unstructured documents, such as text, tables and charts, into structured representations that are readable and manipulable by machines. Specifically, basic capabilities, including text detection, text recognition, table structure recognition and layout analysis, are provided. Upon these basic capabilities, we also build a set of fully functional pipelines for document parsing, i.e., general text reading, table parsing, and document structurization, to drive various applications related to documents in real-world scenarios. Moreover, DocXChain is concise, modularized and flexible, such that it can be readily integrated with existing tools, libraries or models (such as LangChain and ChatGPT), to construct more powerful systems that can accomplish more complicated and challenging tasks. The code of DocXChain is publicly available at:~\url{https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/Applications/DocXChain}
Abstract:Document pre-trained models and grid-based models have proven to be very effective on various tasks in Document AI. However, for the document layout analysis (DLA) task, existing document pre-trained models, even those pre-trained in a multi-modal fashion, usually rely on either textual features or visual features. Grid-based models for DLA are multi-modality but largely neglect the effect of pre-training. To fully leverage multi-modal information and exploit pre-training techniques to learn better representation for DLA, in this paper, we present VGT, a two-stream Vision Grid Transformer, in which Grid Transformer (GiT) is proposed and pre-trained for 2D token-level and segment-level semantic understanding. Furthermore, a new dataset named D$^4$LA, which is so far the most diverse and detailed manually-annotated benchmark for document layout analysis, is curated and released. Experiment results have illustrated that the proposed VGT model achieves new state-of-the-art results on DLA tasks, e.g. PubLayNet ($95.7\%$$\rightarrow$$96.2\%$), DocBank ($79.6\%$$\rightarrow$$84.1\%$), and D$^4$LA ($67.7\%$$\rightarrow$$68.8\%$). The code and models as well as the D$^4$LA dataset will be made publicly available ~\url{https://github.com/AlibabaResearch/AdvancedLiterateMachinery}.
Abstract:The diversity in length constitutes a significant characteristic of text. Due to the long-tail distribution of text lengths, most existing methods for scene text recognition (STR) only work well on short or seen-length text, lacking the capability of recognizing longer text or performing length extrapolation. This is a crucial issue, since the lengths of the text to be recognized are usually not given in advance in real-world applications, but it has not been adequately investigated in previous works. Therefore, we propose in this paper a method called Length-Insensitive Scene TExt Recognizer (LISTER), which remedies the limitation regarding the robustness to various text lengths. Specifically, a Neighbor Decoder is proposed to obtain accurate character attention maps with the assistance of a novel neighbor matrix regardless of the text lengths. Besides, a Feature Enhancement Module is devised to model the long-range dependency with low computation cost, which is able to perform iterations with the neighbor decoder to enhance the feature map progressively. To the best of our knowledge, we are the first to achieve effective length-insensitive scene text recognition. Extensive experiments demonstrate that the proposed LISTER algorithm exhibits obvious superiority on long text recognition and the ability for length extrapolation, while comparing favourably with the previous state-of-the-art methods on standard benchmarks for STR (mainly short text).
Abstract:Due to the enormous technical challenges and wide range of applications, scene text recognition (STR) has been an active research topic in computer vision for years. To tackle this tough problem, numerous innovative methods have been successively proposed, and incorporating linguistic knowledge into STR models has recently become a prominent trend. In this work, we first draw inspiration from the recent progress in Vision Transformer (ViT) to construct a conceptually simple yet functionally powerful vision STR model, which is built upon ViT and a tailored Adaptive Addressing and Aggregation (A$^3$) module. It already outperforms most previous state-of-the-art models for scene text recognition, including both pure vision models and language-augmented methods. To integrate linguistic knowledge, we further propose a Multi-Granularity Prediction strategy to inject information from the language modality into the model in an implicit way, \ie, subword representations (BPE and WordPiece) widely used in NLP are introduced into the output space, in addition to the conventional character level representation, while no independent language model (LM) is adopted. To produce the final recognition results, two strategies for effectively fusing the multi-granularity predictions are devised. The resultant algorithm (termed MGP-STR) is able to push the performance envelope of STR to an even higher level. Specifically, MGP-STR achieves an average recognition accuracy of $94\%$ on standard benchmarks for scene text recognition. Moreover, it also achieves state-of-the-art results on widely-used handwritten benchmarks as well as more challenging scene text datasets, demonstrating the generality of the proposed MGP-STR algorithm. The source code and models will be available at: \url{https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR}.
Abstract:Current text recognition systems, including those for handwritten scripts and scene text, have relied heavily on image synthesis and augmentation, since it is difficult to realize real-world complexity and diversity through collecting and annotating enough real text images. In this paper, we explore the problem of text image generation, by taking advantage of the powerful abilities of Diffusion Models in generating photo-realistic and diverse image samples with given conditions, and propose a method called Conditional Text Image Generation with Diffusion Models (CTIG-DM for short). To conform to the characteristics of text images, we devise three conditions: image condition, text condition, and style condition, which can be used to control the attributes, contents, and styles of the samples in the image generation process. Specifically, four text image generation modes, namely: (1) synthesis mode, (2) augmentation mode, (3) recovery mode, and (4) imitation mode, can be derived by combining and configuring these three conditions. Extensive experiments on both handwritten and scene text demonstrate that the proposed CTIG-DM is able to produce image samples that simulate real-world complexity and diversity, and thus can boost the performance of existing text recognizers. Besides, CTIG-DM shows its appealing potential in domain adaptation and generating images containing Out-Of-Vocabulary (OOV) words.
Abstract:Visual information extraction (VIE) plays an important role in Document Intelligence. Generally, it is divided into two tasks: semantic entity recognition (SER) and relation extraction (RE). Recently, pre-trained models for documents have achieved substantial progress in VIE, particularly in SER. However, most of the existing models learn the geometric representation in an implicit way, which has been found insufficient for the RE task since geometric information is especially crucial for RE. Moreover, we reveal another factor that limits the performance of RE lies in the objective gap between the pre-training phase and the fine-tuning phase for RE. To tackle these issues, we propose in this paper a multi-modal framework, named GeoLayoutLM, for VIE. GeoLayoutLM explicitly models the geometric relations in pre-training, which we call geometric pre-training. Geometric pre-training is achieved by three specially designed geometry-related pre-training tasks. Additionally, novel relation heads, which are pre-trained by the geometric pre-training tasks and fine-tuned for RE, are elaborately designed to enrich and enhance the feature representation. According to extensive experiments on standard VIE benchmarks, GeoLayoutLM achieves highly competitive scores in the SER task and significantly outperforms the previous state-of-the-arts for RE (\eg, the F1 score of RE on FUNSD is boosted from 80.35\% to 89.45\%). The code and models are publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/GeoLayoutLM
Abstract:Recently, Visual Information Extraction (VIE) has been becoming increasingly important in both the academia and industry, due to the wide range of real-world applications. Previously, numerous works have been proposed to tackle this problem. However, the benchmarks used to assess these methods are relatively plain, i.e., scenarios with real-world complexity are not fully represented in these benchmarks. As the first contribution of this work, we curate and release a new dataset for VIE, in which the document images are much more challenging in that they are taken from real applications, and difficulties such as blur, partial occlusion, and printing shift are quite common. All these factors may lead to failures in information extraction. Therefore, as the second contribution, we explore an alternative approach to precisely and robustly extract key information from document images under such tough conditions. Specifically, in contrast to previous methods, which usually either incorporate visual information into a multi-modal architecture or train text spotting and information extraction in an end-to-end fashion, we explicitly model entities as semantic points, i.e., center points of entities are enriched with semantic information describing the attributes and relationships of different entities, which could largely benefit entity labeling and linking. Extensive experiments on standard benchmarks in this field as well as the proposed dataset demonstrate that the proposed method can achieve significantly enhanced performance on entity labeling and linking, compared with previous state-of-the-art models. Dataset is available at https://www.modelscope.cn/datasets/damo/SIBR/summary.
Abstract:Table structure recognition (TSR) aims at extracting tables in images into machine-understandable formats. Recent methods solve this problem by predicting the adjacency relations of detected cell boxes, or learning to generate the corresponding markup sequences from the table images. However, they either count on additional heuristic rules to recover the table structures, or require a huge amount of training data and time-consuming sequential decoders. In this paper, we propose an alternative paradigm. We model TSR as a logical location regression problem and propose a new TSR framework called LORE, standing for LOgical location REgression network, which for the first time combines logical location regression together with spatial location regression of table cells. Our proposed LORE is conceptually simpler, easier to train and more accurate than previous TSR models of other paradigms. Experiments on standard benchmarks demonstrate that LORE consistently outperforms prior arts. Code is available at https:// github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/LORE-TSR.