Abstract:The forthcoming 6G and beyond wireless networks are anticipated to introduce new groundbreaking applications, such as Integrated Sensing and Communications (ISAC), potentially leveraging much wider bandwidths at higher frequencies and using significantly larger antenna arrays at base stations. This puts the system operation in the radiative near-field regime of the BS antenna array, characterized by spherical rather than flat wavefronts. In this paper, we refer to such a system as near-field ISAC. Unlike the far-field regime, the near-field regime allows for precise focusing of transmission beams on specific areas, making it possible to simultaneously determine a target's direction and range from a single base station and resolve targets located in the same direction. This work designs the transmit symbol vector in near-field ISAC to maximize a weighted combination of sensing and communication performances subject to a total power constraint using symbol-level precoding (SLP). The formulated optimization problem is convex, and the solution is used to estimate the angle and range of the considered targets using the 2D MUSIC algorithm. The simulation results suggest that the SLP-based design outperforms the block-level-based counterpart. Moreover, the 2D MUSIC algorithm accurately estimates the targets' parameters.
Abstract:Integrated sensing and communications (ISAC) has emerged as a pivotal enabling technology for next-generation wireless networks. Despite the distinct signal design requirements of sensing and communication (S&C) systems, shifting the symbol-wise pulse shaping (SWiPS) framework from communication-only systems to ISAC poses significant challenges in signal design and processing This paper addresses these challenges by examining the ambiguity function (AF) of the SWiPS ISAC signal and introducing a novel pulse shaping design for single-carrier ISAC transmission. We formulate optimization problems to minimize the average integrated sidelobe level (ISL) of the AF, as well as the weighted ISL (WISL) while satisfying inter-symbol interference (ISI), out-of-band emission (OOBE), and power constraints. Our contributions include establishing the relationship between the AFs of both the random data symbols and signaling pulses, analyzing the statistical characteristics of the AF, and developing algorithmic frameworks for pulse shaping optimization using successive convex approximation (SCA) and alternating direction method of multipliers (ADMM) approaches. Numerical results are provided to validate our theoretical analysis, which demonstrate significant performance improvements in the proposed SWiPS design compared to the root-raised cosine (RRC) pulse shaping for conventional communication systems.
Abstract:Integrated sensing and communications (ISAC) is widely recognized as a pivotal and emerging technology for the next-generation mobile communication systems. However, how to optimize the time-frequency domain radio resource distribution for both communications and sensing, especially in scenarios where conflicting priorities emerge, becomes a crucial and challenging issue. In response to this problem, we first formulate the theoretical relationship between frequency domain subcarrier distribution and the range Cram\'er-Rao bound (CRB), and time domain sensing symbol distribution and the velocity CRB, as well as between subcarrier distribution and achievable communication rates in narrowband systems. Based on the derived range and velocity CRB expressions, the subcarrier and sensing symbol distribution schemes with the optimal and the worst sensing performance are respectively identified under both single-user equipment (single-UE) and multi-UE orthogonal frequency-division multiple access (OFDMA) ISAC systems. Furthermore, it is demonstrated that the impact of subcarrier distribution on achievable communication rates in synchronous narrowband OFDMA ISAC systems is marginal. This insight reveals that the constraints associated with subcarrier distribution optimization for achievable rates can be released. To substantiate our analysis, we present simulation results that demonstrate the performance advantages of the proposed distribution schemes.
Abstract:Constructive interference (CI) precoding, which converts the harmful multi-user interference into beneficial signals, is a promising and efficient interference management scheme in multi-antenna communication systems. However, CI-based symbol-level precoding (SLP) experiences high computational complexity as the number of symbol slots increases within a transmission block, rendering it unaffordable in practical communication systems. In this paper, we propose a symbol-level extrapolation (SLE) strategy to extrapolate the precoding matrix by leveraging the relationship between different symbol slots within in a transmission block, during which the channel state information (CSI) remains constant, where we design a closed-form iterative algorithm based on SLE for both PSK and QAM modulation. In order to further reduce the computational complexity, a sub-optimal closed-form solution based on SLE is further developed for PSK and QAM, respectively. Moreover, we design an unsupervised SLE-based neural network (SLE-Net) to unfold the proposed iterative algorithm, which helps enhance the interpretability of the neural network. By carefully designing the loss function of the SLE-Net, the time-complexity of the network can be reduced effectively. Extensive simulation results illustrate that the proposed algorithms can dramatically reduce the computational complexity and time complexity with only marginal performance loss, compared with the conventional SLP design methods.
Abstract:The integration of sensing and communication (ISAC) emerges as a cornerstone technology for the forth upcoming sixth generation era, seamlessly incorporating sensing functionality into wireless networks as a native capability. The main challenges in efficient ISAC are constituted by its limited sensing and communication coverage, as well as severe inter-cell interference. Network-level ISAC relying on multi-cell cooperation is capable of effectively expanding both the sensing and communication (S&C) coverage and of providing extra degrees of freedom (DoF) for realizing increased integration gains between S&C. In this work, we provide new considerations for ISAC networks, including new metrics, the optimization of the DoF, cooperation regimes, and highlight new S&C tradeoffs. Then, we discuss a suite of cooperative S&C architectures both at the task, as well as data, and signal levels. Furthermore, the interplay between S&C at the network level is investigated and promising research directions are outlined.
Abstract:As an emerging antenna technology, a fluid antenna system (FAS) enhances spatial diversity to improve both sensing and communication performance by shifting the active antennas among available ports. In this letter, we study the potential of shifting the integrated sensing and communication (ISAC) trade-off with FAS. We propose the model for FAS-enabled ISAC and jointly optimize the transmit beamforming and port selection of FAS. In particular, we aim to minimize the transmit power, while satisfying both communication and sensing requirements. An efficient iterative algorithm based on sparse optimization, convex approximation, and a penalty approach is developed. The simulation results show that the proposed scheme can attain 33% reductions in transmit power with guaranteed sensing and communication performance, showing the great potential of the fluid antenna for striking a flexible tradeoff between sensing and communication in ISAC systems.
Abstract:Integrated sensing and communication (ISAC) networks are investigated with the objective of effectively balancing the sensing and communication (S&C) performance at the network level. Through the simultaneous utilization of multi-point (CoMP) coordinated joint transmission and distributed multiple-input multiple-output (MIMO) radar techniques, we propose an innovative networked ISAC scheme, where multiple transceivers are employed for collaboratively enhancing the S&C services. Then, the potent tool of stochastic geometry is exploited for characterizing the S&C performance, which allows us to illuminate the key cooperative dependencies in the ISAC network and optimize salient network-level parameters. Remarkably, the Cramer-Rao lower bound (CRLB) expression of the localization accuracy derived unveils a significant finding: Deploying N ISAC transceivers yields an enhanced average cooperative sensing performance across the entire network, in accordance with the ln^2N scaling law. Crucially, this scaling law is less pronounced in comparison to the performance enhancement of N^2 achieved when the transceivers are equidistant from the target, which is primarily due to the substantial path loss from the distant base stations (BSs) and leads to reduced contributions to sensing performance gain. Moreover, we derive a tight expression of the communication rate, and present a low-complexity algorithm to determine the optimal cooperative cluster size. Based on our expression derived for the S&C performance, we formulate the optimization problem of maximizing the network performance in terms of two joint S&C metrics. To this end, we jointly optimize the cooperative BS cluster sizes and the transmit power to strike a flexible tradeoff between the S&C performance.
Abstract:In this work, we study integrated sensing and communication (ISAC) networks intending to effectively balance sensing and communication (S&C) performance at the network level. Through the simultaneous utilization of multi-point (CoMP) coordinated joint transmission and distributed multiple-input multiple-output (MIMO) radar techniques, we propose a cooperative networked ISAC scheme to enhance both S&C services. Then, the tool of stochastic geometry is exploited to capture the S&C performance, which allows us to illuminate key cooperative dependencies in the ISAC network. Remarkably, the derived expression of the Cramer-Rao lower bound (CRLB) of the localization accuracy unveils a significant finding: Deploying $N$ ISAC transceivers yields an enhanced sensing performance across the entire network, in accordance with the $\ln^2N$ scaling law. Simulation results demonstrate that compared to the time-sharing scheme, the proposed cooperative ISAC scheme can effectively improve the average data rate and reduce the CRLB.
Abstract:Both dual-functional radar-communication (DFRC) and massive multiple-input multiple-output (MIMO) have been recognized as enabling technologies for 6G wireless networks. This paper considers the advanced waveform design for hardware-efficient massive MIMO DFRC systems. Specifically, the transmit waveform is imposed with the quantized constant-envelope (QCE) constraint, which facilitates the employment of low-resolution digital-to-analog converters (DACs) and power-efficient amplifiers. The waveform design problem is formulated as the minimization of the mean square error (MSE) between the designed and desired beampatterns subject to the constructive interference (CI)-based communication quality of service (QoS) constraints and the QCE constraint. To solve the formulated problem, we first utilize the penalty technique to transform the discrete problem into an equivalent continuous penalty model. Then, we propose an inexact augmented Lagrangian method (ALM) algorithm for solving the penalty model. In particular, the ALM subproblem at each iteration is solved by a custom-built block successive upper-bound minimization (BSUM) algorithm, which admits closed-form updates, making the proposed inexact ALM algorithm computationally efficient. Simulation results demonstrate the superiority of the proposed approach over existing state-of-the-art ones. In addition, extensive simulations are conducted to examine the impact of various system parameters on the trade-off between communication and radar performances.
Abstract:This paper proposes a framework for designing robust precoders for a multi-input single-output (MISO) system that performs integrated sensing and communication (ISAC) across multiple cells and users. We use Cramer-Rao-Bound (CRB) to measure the sensing performance and derive its expressions for two multi-cell scenarios, namely coordinated beamforming (CBF) and coordinated multi-point (CoMP). In the CBF scheme, a BS shares channel state information (CSI) and estimates target parameters using monostatic sensing. In contrast, a BS in the CoMP scheme shares the CSI and data, allowing bistatic sensing through inter-cell reflection. We consider both block-level (BL) and symbol-level (SL) precoding schemes for both the multi-cell scenarios that are robust to channel state estimation errors. The formulated optimization problems to minimize the CRB in estimating the parameters of a target and maximize the minimum communication signal-to-interference-plus-noise-ratio (SINR) while satisfying a given total transmit power budget are non-convex. We tackle the non-convexity using a combination of semidefinite relaxation (SDR) and alternating optimization (AO) techniques. Simulations suggest that neglecting the inter-cell reflection and communication links degrades the performance of an ISAC system. The CoMP scenario employing SL precoding performs the best, whereas the BL precoding applied in the CBF scenario produces relatively high estimation error for a given minimum SINR value.