Abstract:In recent years, embodied intelligent robotics (EIR) has made significant progress in multi-modal perception, autonomous decision-making, and physical interaction. Some robots have already been tested in general-purpose scenarios such as homes and shopping malls. We aim to advance the research and application of embodied intelligence in industrial scenes. However, current EIR lacks a deep understanding of industrial environment semantics and the normative constraints between industrial operating objects. To address this gap, this paper first reviews the history of industrial robotics and the mainstream EIR frameworks. We then introduce the concept of the embodied intelligent industrial robotics (EIIR) and propose a knowledge-driven EIIR technology framework for industrial environments. The framework includes four main modules: world model, high-level task planner, low-level skill controller, and simulator. We also review the current development of technologies related to each module and highlight recent progress in adapting them to industrial applications. Finally, we summarize the key challenges EIIR faces in industrial scenarios and suggest future research directions. We believe that EIIR technology will shape the next generation of industrial robotics. Industrial systems based on embodied intelligent industrial robots offer strong potential for enabling intelligent manufacturing. We will continue to track and summarize new research in this area and hope this review will serve as a valuable reference for scholars and engineers interested in industrial embodied intelligence. Together, we can help drive the rapid advancement and application of this technology. The associated project can be found at https://github.com/jackyzengl/EIIR.
Abstract:In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide array of text-centric tasks. However, their `large' scale introduces significant computational and storage challenges, particularly in managing the key-value states of the transformer, which limits their wider applicability. Therefore, we propose to adaptively release resources from caches and rebuild the necessary key-value states. Particularly, we accomplish this by a lightweight controller module to approximate an ideal top-$K$ sparse attention. This module retains the tokens with the highest top-$K$ attention weights and simultaneously rebuilds the discarded but necessary tokens, which may become essential for future decoding. Comprehensive experiments in natural language generation and modeling reveal that our method is not only competitive with full attention in terms of performance but also achieves a significant throughput improvement of up to 221.8%. The code for replication is available on the https://github.com/WHUIR/ADORE.
Abstract:Careful placement of a computational application within a target device cluster is critical for achieving low application completion time. The problem is challenging due to its NP-hardness and combinatorial nature. In recent years, learning-based approaches have been proposed to learn a placement policy that can be applied to unseen applications, motivated by the problem of placing a neural network across cloud servers. These approaches, however, generally assume the device cluster is fixed, which is not the case in mobile or edge computing settings, where heterogeneous devices move in and out of range for a particular application. We propose a new learning approach called GiPH, which learns policies that generalize to dynamic device clusters via 1) a novel graph representation gpNet that efficiently encodes the information needed for choosing a good placement, and 2) a scalable graph neural network (GNN) that learns a summary of the gpNet information. GiPH turns the placement problem into that of finding a sequence of placement improvements, learning a policy for selecting this sequence that scales to problems of arbitrary size. We evaluate GiPH with a wide range of task graphs and device clusters and show that our learned policy rapidly find good placements for new problem instances. GiPH finds placements with up to 30.5% lower completion times, searching up to 3X faster than other search-based placement policies.
Abstract:This paper studies faithful explanations for Graph Neural Networks (GNNs). First, we provide a new and general method for formally characterizing the faithfulness of explanations for GNNs. It applies to existing explanation methods, including feature attributions and subgraph explanations. Second, our analytical and empirical results demonstrate that feature attribution methods cannot capture the nonlinear effect of edge features, while existing subgraph explanation methods are not faithful. Third, we introduce \emph{k-hop Explanation with a Convolutional Core} (KEC), a new explanation method that provably maximizes faithfulness to the original GNN by leveraging information about the graph structure in its adjacency matrix and its \emph{k-th} power. Lastly, our empirical results over both synthetic and real-world datasets for classification and anomaly detection tasks with GNNs demonstrate the effectiveness of our approach.