Abstract:In recent years, embodied intelligent robotics (EIR) has made significant progress in multi-modal perception, autonomous decision-making, and physical interaction. Some robots have already been tested in general-purpose scenarios such as homes and shopping malls. We aim to advance the research and application of embodied intelligence in industrial scenes. However, current EIR lacks a deep understanding of industrial environment semantics and the normative constraints between industrial operating objects. To address this gap, this paper first reviews the history of industrial robotics and the mainstream EIR frameworks. We then introduce the concept of the embodied intelligent industrial robotics (EIIR) and propose a knowledge-driven EIIR technology framework for industrial environments. The framework includes four main modules: world model, high-level task planner, low-level skill controller, and simulator. We also review the current development of technologies related to each module and highlight recent progress in adapting them to industrial applications. Finally, we summarize the key challenges EIIR faces in industrial scenarios and suggest future research directions. We believe that EIIR technology will shape the next generation of industrial robotics. Industrial systems based on embodied intelligent industrial robots offer strong potential for enabling intelligent manufacturing. We will continue to track and summarize new research in this area and hope this review will serve as a valuable reference for scholars and engineers interested in industrial embodied intelligence. Together, we can help drive the rapid advancement and application of this technology. The associated project can be found at https://github.com/jackyzengl/EIIR.