Abstract:The distributed upper 6 GHz (U6G) extra-large scale antenna array (ELAA) is a key enabler for future wireless communication systems, offering higher throughput and wider coverage, similar to existing ELAA systems, while effectively mitigating unaffordable complexity and hardware overhead. Uncertain channel characteristics, however, present significant bottleneck problems that hinder the hardware structure and algorithm design of the distributed U6G ELAA system. In response, we construct a U6G channel sounder and carry out extensive measurement campaigns across various typical scenarios. Initially, U6G channel characteristics, particularly small-scale fading characteristics, are unveiled and compared across different scenarios. Subsequently, the U6G ELAA channel characteristics are analyzed using a virtual array comprising 64 elements. Furthermore, inspired by the potential for distributed processing, we investigate U6G ELAA channel characteristics from the perspectives of subarrays and sub-bands, including subarray-wise nonstationarities, consistencies, far-field approximations, and sub-band characteristics. Through a combination of analysis and measurement validation, several insights and benefits, particularly suitable for distributed processing in U6G ELAA systems, are revealed, which provides practical validation for the deployment of U6G ELAA systems.