Abstract:Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes like material, style, layout, etc. remains a challenge, leading to a lack of disentanglement and editability. To address this, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low- to high-frequency information, providing a new perspective on representing, generating, and editing images. We develop Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called ProSpect. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer stronger disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image/text-guided material/style/layout transfer/editing, achieving previously unattainable results with a single image input without fine-tuning the diffusion models.
Abstract:Visual Grounding (VG) refers to locating a region described by expressions in a specific image, which is a critical topic in vision-language fields. To alleviate the dependence on labeled data, existing unsupervised methods try to locate regions using task-unrelated pseudo-labels. However, a large proportion of pseudo-labels are noisy and diversity scarcity in language taxonomy. Inspired by the advances in V-L pretraining, we consider utilizing the VLP models to realize unsupervised transfer learning in downstream grounding task. Thus, we propose CLIP-VG, a novel method that can conduct self-paced curriculum adapting of CLIP via exploiting pseudo-language labels to solve VG problem. By elaborating an efficient model structure, we first propose a single-source and multi-source curriculum adapting method for unsupervised VG to progressively sample more reliable cross-modal pseudo-labels to obtain the optimal model, thus achieving implicit knowledge exploiting and denoising. Our method outperforms the existing state-of-the-art unsupervised VG method Pseudo-Q in both single-source and multi-source scenarios with a large margin, i.e., 6.78%~10.67% and 11.39%~24.87% on RefCOCO/+/g datasets, even outperforms existing weakly supervised methods. The code and models will be released at \url{https://github.com/linhuixiao/CLIP-VG}.
Abstract:Prompt tuning is an effective way to adapt the pre-trained visual-language model (VLM) to the downstream task using task-related textual tokens. Representative CoOp-based work combines the learnable textual tokens with the class tokens to obtain specific textual knowledge. However, the specific textual knowledge is the worse generalization to the unseen classes because it forgets the essential general textual knowledge having a strong generalization ability. To tackle this issue, we introduce a novel Knowledge-guided Context Optimization (KgCoOp) to enhance the generalization ability of the learnable prompt for unseen classes. The key insight of KgCoOp is that forgetting about essential knowledge can be alleviated by reducing the discrepancy between the learnable prompt and the hand-crafted prompt. Especially, KgCoOp minimizes the discrepancy between the textual embeddings generated by learned prompts and the hand-crafted prompts. Finally, adding the KgCoOp upon the contrastive loss can make a discriminative prompt for both seen and unseen tasks. Extensive evaluation of several benchmarks demonstrates that the proposed Knowledge-guided Context Optimization is an efficient method for prompt tuning, \emph{i.e.,} achieves better performance with less training time.
Abstract:With the swift advancement of deep learning, state-of-the-art algorithms have been utilized in various social situations. Nonetheless, some algorithms have been discovered to exhibit biases and provide unequal results. The current debiasing methods face challenges such as poor utilization of data or intricate training requirements. In this work, we found that the backdoor attack can construct an artificial bias similar to the model bias derived in standard training. Considering the strong adjustability of backdoor triggers, we are motivated to mitigate the model bias by carefully designing reverse artificial bias created from backdoor attack. Based on this, we propose a backdoor debiasing framework based on knowledge distillation, which effectively reduces the model bias from original data and minimizes security risks from the backdoor attack. The proposed solution is validated on both image and structured datasets, showing promising results. This work advances the understanding of backdoor attacks and highlights its potential for beneficial applications. The code for the study can be found at \url{https://anonymous.4open.science/r/DwB-BC07/}.
Abstract:Image manipulation under the guidance of textual descriptions has recently received a broad range of attention. In this study, we focus on the regional editing of images with the guidance of given text prompts. Different from current mask-based image editing methods, we propose a novel region-aware diffusion model (RDM) for entity-level image editing, which could automatically locate the region of interest and replace it following given text prompts. To strike a balance between image fidelity and inference speed, we design the intensive diffusion pipeline by combing latent space diffusion and enhanced directional guidance. In addition, to preserve image content in non-edited regions, we introduce regional-aware entity editing to modify the region of interest and preserve the out-of-interest region. We validate the proposed RDM beyond the baseline methods through extensive qualitative and quantitative experiments. The results show that RDM outperforms the previous approaches in terms of visual quality, overall harmonization, non-editing region content preservation, and text-image semantic consistency. The codes are available at https://github.com/haha-lisa/RDM-Region-Aware-Diffusion-Model.
Abstract:Synthesizing high-fidelity complex images from text is challenging. Based on large pretraining, the autoregressive and diffusion models can synthesize photo-realistic images. Although these large models have shown notable progress, there remain three flaws. 1) These models require tremendous training data and parameters to achieve good performance. 2) The multi-step generation design slows the image synthesis process heavily. 3) The synthesized visual features are difficult to control and require delicately designed prompts. To enable high-quality, efficient, fast, and controllable text-to-image synthesis, we propose Generative Adversarial CLIPs, namely GALIP. GALIP leverages the powerful pretrained CLIP model both in the discriminator and generator. Specifically, we propose a CLIP-based discriminator. The complex scene understanding ability of CLIP enables the discriminator to accurately assess the image quality. Furthermore, we propose a CLIP-empowered generator that induces the visual concepts from CLIP through bridge features and prompts. The CLIP-integrated generator and discriminator boost training efficiency, and as a result, our model only requires about 3% training data and 6% learnable parameters, achieving comparable results to large pretrained autoregressive and diffusion models. Moreover, our model achieves 120 times faster synthesis speed and inherits the smooth latent space from GAN. The extensive experimental results demonstrate the excellent performance of our GALIP. Code is available at https://github.com/tobran/GALIP.
Abstract:There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called label-consistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage VisionandLanguage Pre-trained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to diverse domains. We empirically verify the effectiveness of our proposed approach under a variety of settings with different datasets, target models, and even commercial platforms Microsoft Azure and Baidu PaddlePaddle.
Abstract:Although significant progress has been made in few-shot learning, most of existing few-shot learning methods require supervised pre-training on a large amount of samples of base classes, which limits their generalization ability in real world application. Recently, large-scale self-supervised vision-language models (e.g., CLIP) have provided a new paradigm for transferable visual representation learning. However, the pre-trained VLPs may neglect detailed visual information that is difficult to describe by language sentences, but important for learning an effective classifier in few-shot classification. To address the above problem, we propose a new framework, named Semantic-guided Visual Adapting (SgVA), which can effectively extend vision-language pre-trained models to produce discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation. The implicit knowledge distillation is designed to transfer the fine-grained cross-modal knowledge to guide the updating of the vision adapter. State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
Abstract:In this paper, we introduce the task of "Creativity Transfer". The artistic creativity within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes including semantic elements, object shape, etc. Previous arbitrary example-guided artistic image generation methods (e.g., style transfer) often fail to control shape changes or convey semantic elements. The pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality, but they often require extensive textual descriptions to accurately portray attributes of a particular painting. We believe that the uniqueness of an artwork lies precisely in the fact that it cannot be adequately explained with normal language. Our key idea is to learn artistic creativity directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we assume creativity as a learnable textual description of a painting. We propose an attention-based inversion method, which can efficiently and accurately learn the holistic and detailed information of an image, thus capturing the complete artistic creativity of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Code and models are available at https://github.com/zyxElsa/creativity-transfer.
Abstract:Despite the impressive results of arbitrary image-guided style transfer methods, text-driven image stylization has recently been proposed for transferring a natural image into the stylized one according to textual descriptions of the target style provided by the user. Unlike previous image-to-image transfer approaches, text-guided stylization progress provides users with a more precise and intuitive way to express the desired style. However, the huge discrepancy between cross-modal inputs/outputs makes it challenging to conduct text-driven image stylization in a typical feed-forward CNN pipeline. In this paper, we present DiffStyler on the basis of diffusion models. The cross-modal style information can be easily integrated as guidance during the diffusion progress step-by-step. In particular, we use a dual diffusion processing architecture to control the balance between the content and style of the diffused results. Furthermore, we propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image. We validate the proposed DiffStyler beyond the baseline methods through extensive qualitative and quantitative experiments.