Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Private Synthetic Data for Multitask Learning and Marginal Queries


Sep 15, 2022
Giuseppe Vietri, Cedric Archambeau, Sergul Aydore, William Brown, Michael Kearns, Aaron Roth, Ankit Siva, Shuai Tang, Zhiwei Steven Wu

* The short version of this paper appears in the proceedings of NeurIPS-22 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors


Jul 17, 2022
Gianluca Detommaso, Alberto Gasparin, Andrew Wilson, Cedric Archambeau


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Continual Learning with Transformers for Image Classification


Jun 28, 2022
Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, Cedric Archambeau

* Appeared in CVPR CLVision workshop. arXiv admin note: substantial text overlap with arXiv:2203.04640 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Diverse Counterfactual Explanations for Anomaly Detection in Time Series


Mar 21, 2022
Deborah Sulem, Michele Donini, Muhammad Bilal Zafar, Francois-Xavier Aubet, Jan Gasthaus, Tim Januschowski, Sanjiv Das, Krishnaram Kenthapadi, Cedric Archambeau

* 24 pages, 11 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Memory Efficient Continual Learning for Neural Text Classification


Mar 09, 2022
Beyza Ermis, Giovanni Zappella, Martin Wistuba, Cedric Archambeau


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Meta-Forecasting by combining Global Deep Representations with Local Adaptation


Nov 12, 2021
Riccardo Grazzi, Valentin Flunkert, David Salinas, Tim Januschowski, Matthias Seeger, Cedric Archambeau


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Meta-Forecasting by combining Global DeepRepresentations with Local Adaptation


Nov 05, 2021
Riccardo Grazzi, Valentin Flunkert, David Salinas, Tim Januschowski, Matthias Seeger, Cedric Archambeau


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A multi-objective perspective on jointly tuning hardware and hyperparameters


Jun 10, 2021
David Salinas, Valerio Perrone, Olivier Cruchant, Cedric Archambeau


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Overfitting in Bayesian Optimization: an empirical study and early-stopping solution


Apr 16, 2021
Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias Seeger, Cedric Archambeau


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

BORE: Bayesian Optimization by Density-Ratio Estimation


Feb 17, 2021
Louis C. Tiao, Aaron Klein, Matthias Seeger, Edwin V. Bonilla, Cedric Archambeau, Fabio Ramos

* preprint, under review 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>