AutoScale: Optimizing Energy Efficiency of End-to-End Edge Inference under Stochastic Variance

May 06, 2020
Young Geun Kim, Carole-Jean Wu


  Access Model/Code and Paper
GEVO: GPU Code Optimization using Evolutionary Computation

Apr 27, 2020
Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, Carole-Jean Wu


  Access Model/Code and Paper
GEVO: GPU Code Optimization using EvolutionaryComputation

Apr 17, 2020
Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, Carole-Jean Wu


  Access Model/Code and Paper
Developing a Recommendation Benchmark for MLPerf Training and Inference

Apr 14, 2020
Carole-Jean Wu, Robin Burke, Ed H. Chi, Joseph Konstan, Julian McAuley, Yves Raimond, Hao Zhang


  Access Model/Code and Paper
MLPerf Inference Benchmark

Nov 06, 2019
Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou


  Access Model/Code and Paper
MLPerf Training Benchmark

Oct 30, 2019
Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie Xu, Cliff Young, Matei Zaharia


  Access Model/Code and Paper
Exploiting Parallelism Opportunities with Deep Learning Frameworks

Aug 13, 2019
Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim Hazelwood, David Brooks


  Access Model/Code and Paper
The Architectural Implications of Facebook's DNN-based Personalized Recommendation

Jun 18, 2019
Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang

* 11 pages 

  Access Model/Code and Paper
Deep Learning Recommendation Model for Personalization and Recommendation Systems

May 31, 2019
Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, Misha Smelyanskiy

* 10 pages, 6 figures 

  Access Model/Code and Paper