Abstract:Sample efficiency is a critical challenge in reinforcement learning. Model-based RL has emerged as a solution, but its application has largely been confined to single-agent scenarios. In this work, we introduce CoDreamer, an extension of the Dreamer algorithm for multi-agent environments. CoDreamer leverages Graph Neural Networks for a two-level communication system to tackle challenges such as partial observability and inter-agent cooperation. Communication is separately utilised within the learned world models and within the learned policies of each agent to enhance modelling and task-solving. We show that CoDreamer offers greater expressive power than a naive application of Dreamer, and we demonstrate its superiority over baseline methods across various multi-agent environments.
Abstract:Developing agents that can leverage planning abilities during their decision and learning processes is critical to the advancement of Artificial Intelligence. Recent works have demonstrated the effectiveness of combining tree-based search methods and self-play learning mechanisms. Yet, these methods typically face scaling challenges due to the sequential nature of their search. While practical engineering solutions can partly overcome this, they still demand extensive computational resources, which hinders their applicability. In this paper, we introduce SMX, a model-based planning algorithm that utilises scalable Sequential Monte Carlo methods to create an effective self-learning mechanism. Grounded in the theoretical framework of control as inference, SMX benefits from robust theoretical underpinnings. Its sampling-based search approach makes it adaptable to environments with both discrete and continuous action spaces. Furthermore, SMX allows for high parallelisation and can run on hardware accelerators to optimise computing efficiency. SMX demonstrates a statistically significant improvement in performance compared to AlphaZero, as well as demonstrating its performance as an improvement operator for a model-free policy, matching or exceeding top model-free methods across both continuous and discrete environments.