Abstract:Knowledge graph embeddings (KGE) apply machine learning methods on knowledge graphs (KGs) to provide non-classical reasoning capabilities based on similarities and analogies. The learned KG embeddings are typically used to answer queries by ranking all potential answers, but rankings often lack a meaningful probabilistic interpretation - lower-ranked answers do not necessarily have a lower probability of being true. This limitation makes it difficult to distinguish plausible from implausible answers, posing challenges for the application of KGE methods in high-stakes domains like medicine. We address this issue by applying the theory of conformal prediction that allows generating answer sets, which contain the correct answer with probabilistic guarantees. We explain how conformal prediction can be used to generate such answer sets for link prediction tasks. Our empirical evaluation on four benchmark datasets using six representative KGE methods validates that the generated answer sets satisfy the probabilistic guarantees given by the theory of conformal prediction. We also demonstrate that the generated answer sets often have a sensible size and that the size adapts well with respect to the difficulty of the query.
Abstract:Graph neural networks (GNNs) have achieved significant success in various applications. Most GNNs learn the node features with information aggregation of its neighbors and feature transformation in each layer. However, the node features become indistinguishable after many layers, leading to performance deterioration: a significant limitation known as over-smoothing. Past work adopted various techniques for addressing this issue, such as normalization and skip-connection of layer-wise output. After the study, we found that the information aggregations in existing work are all contracted aggregations, with the intrinsic property that features will inevitably converge to the same single point after many layers. To this end, we propose the aggregation over compacted manifolds method (ACM) that replaces the existing information aggregation with aggregation over compact manifolds, a special type of manifold, which avoids contracted aggregations. In this work, we theoretically analyze contracted aggregation and its properties. We also provide an extensive empirical evaluation that shows ACM can effectively alleviate over-smoothing and outperforms the state-of-the-art. The code can be found in https://github.com/DongzhuoranZhou/ACM.git.
Abstract:Statistical information is ubiquitous but drawing valid conclusions from it is prohibitively hard. We explain how knowledge graph embeddings can be used to approximate probabilistic inference efficiently using the example of Statistical EL (SEL), a statistical extension of the lightweight Description Logic EL. We provide proofs for runtime and soundness guarantees, and empirically evaluate the runtime and approximation quality of our approach.
Abstract:Query embedding approaches answer complex logical queries over incomplete knowledge graphs (KGs) by computing and operating on low-dimensional vector representations of entities, relations, and queries. However, current query embedding models heavily rely on excessively parameterized neural networks and cannot explain the knowledge learned from the graph. We propose a novel query embedding method, AConE, which explains the knowledge learned from the graph in the form of SROI^{-} description logic axioms while being more parameter-efficient than most existing approaches. AConE associates queries to a SROI^{-} description logic concept. Every SROI^{-} concept is embedded as a cone in complex vector space, and each SROI^{-} relation is embedded as a transformation that rotates and scales cones. We show theoretically that AConE can learn SROI^{-} axioms, and defines an algebra whose operations correspond one to one to SROI^{-} description logic concept constructs. Our empirical study on multiple query datasets shows that AConE achieves superior results over previous baselines with fewer parameters. Notably on the WN18RR dataset, AConE achieves significant improvement over baseline models. We provide comprehensive analyses showing that the capability to represent axioms positively impacts the results of query answering.
Abstract:Recently, MBConv blocks, initially designed for efficiency in resource-limited settings and later adapted for cutting-edge image classification performances, have demonstrated significant potential in image classification tasks. Despite their success, their application in semantic segmentation has remained relatively unexplored. This paper introduces a novel adaptation of MBConv blocks specifically tailored for semantic segmentation. Our modification stems from the insight that semantic segmentation requires the extraction of more detailed spatial information than image classification. We argue that to effectively perform multi-scale semantic segmentation, each branch of a U-Net architecture, regardless of its resolution, should possess equivalent segmentation capabilities. By implementing these changes, our approach achieves impressive mean Intersection over Union (IoU) scores of 84.5% and 84.0% on the Cityscapes test and validation datasets, respectively, demonstrating the efficacy of our proposed modifications in enhancing semantic segmentation performance.
Abstract:Reasoning with knowledge graphs (KGs) has primarily focused on triple-shaped facts. Recent advancements have been explored to enhance the semantics of these facts by incorporating more potent representations, such as hyper-relational facts. However, these approaches are limited to \emph{atomic facts}, which describe a single piece of information. This paper extends beyond \emph{atomic facts} and delves into \emph{nested facts}, represented by quoted triples where subjects and objects are triples themselves (e.g., ((\emph{BarackObama}, \emph{holds\_position}, \emph{President}), \emph{succeed\_by}, (\emph{DonaldTrump}, \emph{holds\_position}, \emph{President}))). These nested facts enable the expression of complex semantics like \emph{situations} over time and \emph{logical patterns} over entities and relations. In response, we introduce NestE, a novel KG embedding approach that captures the semantics of both atomic and nested factual knowledge. NestE represents each atomic fact as a $1\times3$ matrix, and each nested relation is modeled as a $3\times3$ matrix that rotates the $1\times3$ atomic fact matrix through matrix multiplication. Each element of the matrix is represented as a complex number in the generalized 4D hypercomplex space, including (spherical) quaternions, hyperbolic quaternions, and split-quaternions. Through thorough analysis, we demonstrate the embedding's efficacy in capturing diverse logical patterns over nested facts, surpassing the confines of first-order logic-like expressions. Our experimental results showcase NestE's significant performance gains over current baselines in triple prediction and conditional link prediction. The code and pre-trained models are open available at https://github.com/xiongbo010/NestE.
Abstract:Sparse-view CT reconstruction, aimed at reducing X-ray radiation risks, frequently suffers from image quality degradation, manifested as noise and artifacts. Existing post-processing and dual-domain techniques, although effective in radiation reduction, often lead to over-smoothed results, compromising diagnostic clarity. Addressing this, we introduce TD-Net, a pioneering tri-domain approach that unifies sinogram, image, and frequency domain optimizations. By incorporating Frequency Supervision Module(FSM), TD-Net adeptly preserves intricate details, overcoming the prevalent over-smoothing issue. Extensive evaluations demonstrate TD-Net's superior performance in reconstructing high-quality CT images from sparse views, efficiently balancing radiation safety and image fidelity. The enhanced capabilities of TD-Net in varied noise scenarios highlight its potential as a breakthrough in medical imaging.
Abstract:In recent years, modeling evolving knowledge over temporal knowledge graphs (TKGs) has become a heated topic. Various methods have been proposed to forecast links on TKGs. Most of them are embedding-based, where hidden representations are learned to represent knowledge graph (KG) entities and relations based on the observed graph contexts. Although these methods show strong performance on traditional TKG forecasting (TKGF) benchmarks, they naturally face a strong challenge when they are asked to model the unseen zero-shot relations that has no prior graph context. In this paper, we try to mitigate this problem as follows. We first input the text descriptions of KG relations into large language models (LLMs) for generating relation representations, and then introduce them into embedding-based TKGF methods. LLM-empowered representations can capture the semantic information in the relation descriptions. This makes the relations, whether seen or unseen, with similar semantic meanings stay close in the embedding space, enabling TKGF models to recognize zero-shot relations even without any observed graph context. Experimental results show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations, while still maintaining their ability in link forecasting regarding seen relations.
Abstract:Computed Tomography (CT) with its remarkable capability for three-dimensional imaging from multiple projections, enjoys a broad range of applications in clinical diagnosis, scientific observation, and industrial detection. Neural Adaptive Tomography (NeAT) is a recently proposed 3D rendering method based on neural radiance field for CT, and it demonstrates superior performance compared to traditional methods. However, it still faces challenges when dealing with the substantial perturbations and pose shifts encountered in CT scanning processes. Here, we propose a neural rendering method for CT reconstruction, named Iterative Neural Adaptive Tomography (INeAT), which incorporates iterative posture optimization to effectively counteract the influence of posture perturbations in data, particularly in cases involving significant posture variations. Through the implementation of a posture feedback optimization strategy, INeAT iteratively refines the posture corresponding to the input images based on the reconstructed 3D volume. We demonstrate that INeAT achieves artifact-suppressed and resolution-enhanced reconstruction in scenarios with significant pose disturbances. Furthermore, we show that our INeAT maintains comparable reconstruction performance to stable-state acquisitions even using data from unstable-state acquisitions, which significantly reduces the time required for CT scanning and relaxes the stringent requirements on imaging hardware systems, underscoring its immense potential for applications in short-time and low-cost CT technology.
Abstract:Light-field fluorescence microscopy (LFM) is a powerful elegant compact method for long-term high-speed imaging of complex biological systems, such as neuron activities and rapid movements of organelles. LFM experiments typically generate terabytes image data and require a huge number of storage space. Some lossy compression algorithms have been proposed recently with good compression performance. However, since the specimen usually only tolerates low power density illumination for long-term imaging with low phototoxicity, the image signal-to-noise ratio (SNR) is relative-ly low, which will cause the loss of some efficient position or intensity information by using such lossy compression al-gorithms. Here, we propose a phase-space continuity enhanced bzip2 (PC-bzip2) lossless compression method for LFM data as a high efficiency and open-source tool, which combines GPU-based fast entropy judgement and multi-core-CPU-based high-speed lossless compression. Our proposed method achieves almost 10% compression ratio improvement while keeping the capability of high-speed compression, compared with original bzip2. We evaluated our method on fluorescence beads data and fluorescence staining cells data with different SNRs. Moreover, by introducing the temporal continuity, our method shows the superior compression ratio on time series data of zebrafish blood vessels.