Alert button
Picture for Blessing Sibanda

Blessing Sibanda

Alert button

MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages

May 23, 2023
Cheikh M. Bamba Dione, David Adelani, Peter Nabende, Jesujoba Alabi, Thapelo Sindane, Happy Buzaaba, Shamsuddeen Hassan Muhammad, Chris Chinenye Emezue, Perez Ogayo, Anuoluwapo Aremu, Catherine Gitau, Derguene Mbaye, Jonathan Mukiibi, Blessing Sibanda, Bonaventure F. P. Dossou, Andiswa Bukula, Rooweither Mabuya, Allahsera Auguste Tapo, Edwin Munkoh-Buabeng, victoire Memdjokam Koagne, Fatoumata Ouoba Kabore, Amelia Taylor, Godson Kalipe, Tebogo Macucwa, Vukosi Marivate, Tajuddeen Gwadabe, Mboning Tchiaze Elvis, Ikechukwu Onyenwe, Gratien Atindogbe, Tolulope Adelani, Idris Akinade, Olanrewaju Samuel, Marien Nahimana, Théogène Musabeyezu, Emile Niyomutabazi, Ester Chimhenga, Kudzai Gotosa, Patrick Mizha, Apelete Agbolo, Seydou Traore, Chinedu Uchechukwu, Aliyu Yusuf, Muhammad Abdullahi, Dietrich Klakow

Figure 1 for MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages
Figure 2 for MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages
Figure 3 for MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages
Figure 4 for MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages

In this paper, we present MasakhaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the UD (universal dependencies) guidelines. We conducted extensive POS baseline experiments using conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in UD. Evaluating on the MasakhaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with cross-lingual parameter-efficient fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems more effective for POS tagging in unseen languages.

* Accepted to ACL 2023 (Main conference) 
Viaarxiv icon

A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation

May 04, 2022
David Ifeoluwa Adelani, Jesujoba Oluwadara Alabi, Angela Fan, Julia Kreutzer, Xiaoyu Shen, Machel Reid, Dana Ruiter, Dietrich Klakow, Peter Nabende, Ernie Chang, Tajuddeen Gwadabe, Freshia Sackey, Bonaventure F. P. Dossou, Chris Chinenye Emezue, Colin Leong, Michael Beukman, Shamsuddeen Hassan Muhammad, Guyo Dub Jarso, Oreen Yousuf, Andre Niyongabo Rubungo, Gilles Hacheme, Eric Peter Wairagala, Muhammad Umair Nasir, Benjamin Ayoade Ajibade, Tunde Oluwaseyi Ajayi, Yvonne Wambui Gitau, Jade Abbott, Mohamed Ahmed, Millicent Ochieng, Anuoluwapo Aremu, Perez Ogayo, Jonathan Mukiibi, Fatoumata Ouoba Kabore, Godson Koffi Kalipe, Derguene Mbaye, Allahsera Auguste Tapo, Victoire Memdjokam Koagne, Edwin Munkoh-Buabeng, Valencia Wagner, Idris Abdulmumin, Ayodele Awokoya, Happy Buzaaba, Blessing Sibanda, Andiswa Bukula, Sam Manthalu

Figure 1 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
Figure 2 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
Figure 3 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
Figure 4 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation

Recent advances in the pre-training of language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages are not well represented on the web and therefore excluded from the large-scale crawls used to create datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pre-training? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a new African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both to additional languages and to additional domains is to fine-tune large pre-trained models on small quantities of high-quality translation data.

* Accepted to NAACL 2022 
Viaarxiv icon

MasakhaNER: Named Entity Recognition for African Languages

Mar 22, 2021
David Ifeoluwa Adelani, Jade Abbott, Graham Neubig, Daniel D'souza, Julia Kreutzer, Constantine Lignos, Chester Palen-Michel, Happy Buzaaba, Shruti Rijhwani, Sebastian Ruder, Stephen Mayhew, Israel Abebe Azime, Shamsuddeen Muhammad, Chris Chinenye Emezue, Joyce Nakatumba-Nabende, Perez Ogayo, Anuoluwapo Aremu, Catherine Gitau, Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yimam, Tajuddeen Gwadabe, Ignatius Ezeani, Rubungo Andre Niyongabo, Jonathan Mukiibi, Verrah Otiende, Iroro Orife, Davis David, Samba Ngom, Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi, Gerald Muriuki, Emmanuel Anebi, Chiamaka Chukwuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel Oyerinde, Clemencia Siro, Tobius Saul Bateesa, Temilola Oloyede, Yvonne Wambui, Victor Akinode, Deborah Nabagereka, Maurice Katusiime, Ayodele Awokoya, Mouhamadane MBOUP, Dibora Gebreyohannes, Henok Tilaye, Kelechi Nwaike, Degaga Wolde, Abdoulaye Faye, Blessing Sibanda, Orevaoghene Ahia, Bonaventure F. P. Dossou, Kelechi Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo, Adewale Akinfaderin, Tendai Marengereke, Salomey Osei

Figure 1 for MasakhaNER: Named Entity Recognition for African Languages
Figure 2 for MasakhaNER: Named Entity Recognition for African Languages
Figure 3 for MasakhaNER: Named Entity Recognition for African Languages
Figure 4 for MasakhaNER: Named Entity Recognition for African Languages

We take a step towards addressing the under-representation of the African continent in NLP research by creating the first large publicly available high-quality dataset for named entity recognition (NER) in ten African languages, bringing together a variety of stakeholders. We detail characteristics of the languages to help researchers understand the challenges that these languages pose for NER. We analyze our datasets and conduct an extensive empirical evaluation of state-of-the-art methods across both supervised and transfer learning settings. We release the data, code, and models in order to inspire future research on African NLP.

* Accepted at the AfricaNLP Workshop @EACL 2021 
Viaarxiv icon

Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages

Oct 05, 2020
Wilhelmina Nekoto, Vukosi Marivate, Tshinondiwa Matsila, Timi Fasubaa, Tajudeen Kolawole, Taiwo Fagbohungbe, Solomon Oluwole Akinola, Shamsuddee Hassan Muhammad, Salomon Kabongo, Salomey Osei, Sackey Freshia, Rubungo Andre Niyongabo, Ricky Macharm, Perez Ogayo, Orevaoghene Ahia, Musie Meressa, Mofe Adeyemi, Masabata Mokgesi-Selinga, Lawrence Okegbemi, Laura Jane Martinus, Kolawole Tajudeen, Kevin Degila, Kelechi Ogueji, Kathleen Siminyu, Julia Kreutzer, Jason Webster, Jamiil Toure Ali, Jade Abbott, Iroro Orife, Ignatius Ezeani, Idris Abdulkabir Dangana, Herman Kamper, Hady Elsahar, Goodness Duru, Ghollah Kioko, Espoir Murhabazi, Elan van Biljon, Daniel Whitenack, Christopher Onyefuluchi, Chris Emezue, Bonaventure Dossou, Blessing Sibanda, Blessing Itoro Bassey, Ayodele Olabiyi, Arshath Ramkilowan, Alp Öktem, Adewale Akinfaderin, Abdallah Bashir

Figure 1 for Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages
Figure 2 for Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages
Figure 3 for Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages
Figure 4 for Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages

Research in NLP lacks geographic diversity, and the question of how NLP can be scaled to low-resourced languages has not yet been adequately solved. "Low-resourced"-ness is a complex problem going beyond data availability and reflects systemic problems in society. In this paper, we focus on the task of Machine Translation (MT), that plays a crucial role for information accessibility and communication worldwide. Despite immense improvements in MT over the past decade, MT is centered around a few high-resourced languages. As MT researchers cannot solve the problem of low-resourcedness alone, we propose participatory research as a means to involve all necessary agents required in the MT development process. We demonstrate the feasibility and scalability of participatory research with a case study on MT for African languages. Its implementation leads to a collection of novel translation datasets, MT benchmarks for over 30 languages, with human evaluations for a third of them, and enables participants without formal training to make a unique scientific contribution. Benchmarks, models, data, code, and evaluation results are released under https://github.com/masakhane-io/masakhane-mt.

* Findings of EMNLP 2020 
Viaarxiv icon

Masakhane -- Machine Translation For Africa

Mar 13, 2020
Iroro Orife, Julia Kreutzer, Blessing Sibanda, Daniel Whitenack, Kathleen Siminyu, Laura Martinus, Jamiil Toure Ali, Jade Abbott, Vukosi Marivate, Salomon Kabongo, Musie Meressa, Espoir Murhabazi, Orevaoghene Ahia, Elan van Biljon, Arshath Ramkilowan, Adewale Akinfaderin, Alp Öktem, Wole Akin, Ghollah Kioko, Kevin Degila, Herman Kamper, Bonaventure Dossou, Chris Emezue, Kelechi Ogueji, Abdallah Bashir

Figure 1 for Masakhane -- Machine Translation For Africa

Africa has over 2000 languages. Despite this, African languages account for a small portion of available resources and publications in Natural Language Processing (NLP). This is due to multiple factors, including: a lack of focus from government and funding, discoverability, a lack of community, sheer language complexity, difficulty in reproducing papers and no benchmarks to compare techniques. To begin to address the identified problems, MASAKHANE, an open-source, continent-wide, distributed, online research effort for machine translation for African languages, was founded. In this paper, we discuss our methodology for building the community and spurring research from the African continent, as well as outline the success of the community in terms of addressing the identified problems affecting African NLP.

* Accepted for the AfricaNLP Workshop, ICLR 2020 
Viaarxiv icon