Abstract:As the complexity of modern systems increases, so does the importance of assessing their security posture through effective vulnerability management and threat modeling techniques. One powerful tool in the arsenal of cybersecurity professionals is the attack graph, a representation of all potential attack paths within a system that an adversary might exploit to achieve a certain objective. Traditional methods of generating attack graphs involve expert knowledge, manual curation, and computational algorithms that might not cover the entire threat landscape due to the ever-evolving nature of vulnerabilities and exploits. This paper explores the approach of leveraging large language models (LLMs), such as ChatGPT, to automate the generation of attack graphs by intelligently chaining Common Vulnerabilities and Exposures (CVEs) based on their preconditions and effects. It also shows how to utilize LLMs to create attack graphs from threat reports.
Abstract:Differentially private federated learning (DP-FL) is a promising technique for collaborative model training while ensuring provable privacy for clients. However, optimizing the tradeoff between privacy and accuracy remains a critical challenge. To our best knowledge, we propose the first DP-FL framework (namely UDP-FL), which universally harmonizes any randomization mechanism (e.g., an optimal one) with the Gaussian Moments Accountant (viz. DP-SGD) to significantly boost accuracy and convergence. Specifically, UDP-FL demonstrates enhanced model performance by mitigating the reliance on Gaussian noise. The key mediator variable in this transformation is the R\'enyi Differential Privacy notion, which is carefully used to harmonize privacy budgets. We also propose an innovative method to theoretically analyze the convergence for DP-FL (including our UDP-FL ) based on mode connectivity analysis. Moreover, we evaluate our UDP-FL through extensive experiments benchmarked against state-of-the-art (SOTA) methods, demonstrating superior performance on both privacy guarantees and model performance. Notably, UDP-FL exhibits substantial resilience against different inference attacks, indicating a significant advance in safeguarding sensitive data in federated learning environments.
Abstract:Generative models such as large language models are extensively used as code copilots and for whole program generation. However, the programs they generate often have questionable correctness, authenticity and reliability in terms of integration as they might not follow the user requirements, provide incorrect and/or nonsensical outputs, or even contain semantic/syntactic errors - overall known as LLM hallucination. In this work, we present several types of code hallucination. We have generated such hallucinated code manually using large language models. We also present a technique - HallTrigger, in order to demonstrate efficient ways of generating arbitrary code hallucination. Our method leverages 3 different dynamic attributes of LLMs to craft prompts that can successfully trigger hallucinations from models without the need to access model architecture or parameters. Results from popular blackbox models suggest that HallTrigger is indeed effective and the pervasive LLM hallucination have sheer impact on software development.
Abstract:Differentially Private Stochastic Gradient Descent (DP-SGD) and its variants have been proposed to ensure rigorous privacy for fine-tuning large-scale pre-trained language models. However, they rely heavily on the Gaussian mechanism, which may overly perturb the gradients and degrade the accuracy, especially in stronger privacy regimes (e.g., the privacy budget $\epsilon < 3$). To address such limitations, we propose a novel Language Model-based Optimal Differential Privacy (LMO-DP) mechanism, which takes the first step to enable the tight composition of accurately fine-tuning (large) language models with a sub-optimal DP mechanism, even in strong privacy regimes (e.g., $0.1\leq \epsilon<3$). Furthermore, we propose a novel offline optimal noise search method to efficiently derive the sub-optimal DP that significantly reduces the noise magnitude. For instance, fine-tuning RoBERTa-large (with 300M parameters) on the SST-2 dataset can achieve an accuracy of 92.20% (given $\epsilon=0.3$, $\delta=10^{-10}$) by drastically outperforming the Gaussian mechanism (e.g., $\sim 50\%$ for small $\epsilon$ and $\delta$). We also draw similar findings on the text generation tasks on GPT-2. Finally, to our best knowledge, LMO-DP is also the first solution to accurately fine-tune Llama-2 with strong differential privacy guarantees. The code will be released soon and available upon request.
Abstract:Many machine learning and data mining algorithms rely on the assumption that the training and testing data share the same feature space and distribution. However, this assumption may not always hold. For instance, there are situations where we need to classify data in one domain, but we only have sufficient training data available from a different domain. The latter data may follow a distinct distribution. In such cases, successfully transferring knowledge across domains can significantly improve learning performance and reduce the need for extensive data labeling efforts. Transfer learning (TL) has thus emerged as a promising framework to tackle this challenge, particularly in security-related tasks. This paper aims to review the current advancements in utilizing TL techniques for security. The paper includes a discussion of the existing research gaps in applying TL in the security domain, as well as exploring potential future research directions and issues that arise in the context of TL-assisted security solutions.
Abstract:Artificial intelligence (AI) has the potential to transform education with its power of uncovering insights from massive data about student learning patterns. However, ethical and trustworthy concerns of AI have been raised but are unsolved. Prominent ethical issues in high school AI education include data privacy, information leakage, abusive language, and fairness. This paper describes technological components that were built to address ethical and trustworthy concerns in a multi-modal collaborative platform (called ALLURE chatbot) for high school students to collaborate with AI to solve the Rubik's cube. In data privacy, we want to ensure that the informed consent of children, parents, and teachers, is at the center of any data that is managed. Since children are involved, language, whether textual, audio, or visual, is acceptable both from users and AI and the system can steer interaction away from dangerous situations. In information management, we also want to ensure that the system, while learning to improve over time, does not leak information about users from one group to another.
Abstract:The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infrastructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vulnerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose Prometheus, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, Prometheus performs a comprehensive security assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, Prometheus evaluates the exploitability of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, Prometheus delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in Prometheus, showcasing the systematic approach adopted for conducting this thorough security analysis.
Abstract:The growing dependence on machine learning in real-world applications emphasizes the importance of understanding and ensuring its safety. Backdoor attacks pose a significant security risk due to their stealthy nature and potentially serious consequences. Such attacks involve embedding triggers within a learning model with the intention of causing malicious behavior when an active trigger is present while maintaining regular functionality without it. This paper evaluates the effectiveness of any backdoor attack incorporating a constant trigger, by establishing tight lower and upper boundaries for the performance of the compromised model on both clean and backdoor test data. The developed theory answers a series of fundamental but previously underexplored problems, including (1) what are the determining factors for a backdoor attack's success, (2) what is the direction of the most effective backdoor attack, and (3) when will a human-imperceptible trigger succeed. Our derived understanding applies to both discriminative and generative models. We also demonstrate the theory by conducting experiments using benchmark datasets and state-of-the-art backdoor attack scenarios.
Abstract:Chatbots, the common moniker for collaborative assistants, are Artificial Intelligence (AI) software that enables people to naturally interact with them to get tasks done. Although chatbots have been studied since the dawn of AI, they have particularly caught the imagination of the public and businesses since the launch of easy-to-use and general-purpose Large Language Model-based chatbots like ChatGPT. As businesses look towards chatbots as a potential technology to engage users, who may be end customers, suppliers, or even their own employees, proper testing of chatbots is important to address and mitigate issues of trust related to service or product performance, user satisfaction and long-term unintended consequences for society. This paper reviews current practices for chatbot testing, identifies gaps as open problems in pursuit of user trust, and outlines a path forward.
Abstract:Edge computing is a paradigm that shifts data processing services to the network edge, where data are generated. While such an architecture provides faster processing and response, among other benefits, it also raises critical security issues and challenges that must be addressed. This paper discusses the security threats and vulnerabilities emerging from the edge network architecture spanning from the hardware layer to the system layer. We further discuss privacy and regulatory compliance challenges in such networks. Finally, we argue the need for a holistic approach to analyze edge network security posture, which must consider knowledge from each layer.