Abstract:We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models.
Abstract:Critical learning periods are periods early in development where temporary sensory deficits can have a permanent effect on behavior and learned representations. Despite the radical differences between biological and artificial networks, critical learning periods have been empirically observed in both systems. This suggests that critical periods may be fundamental to learning and not an accident of biology. Yet, why exactly critical periods emerge in deep networks is still an open question, and in particular it is unclear whether the critical periods observed in both systems depend on particular architectural or optimization details. To isolate the key underlying factors, we focus on deep linear network models, and show that, surprisingly, such networks also display much of the behavior seen in biology and artificial networks, while being amenable to analytical treatment. We show that critical periods depend on the depth of the model and structure of the data distribution. We also show analytically and in simulations that the learning of features is tied to competition between sources. Finally, we extend our analysis to multi-task learning to show that pre-training on certain tasks can damage the transfer performance on new tasks, and show how this depends on the relationship between tasks and the duration of the pre-training stage. To the best of our knowledge, our work provides the first analytically tractable model that sheds light into why critical learning periods emerge in biological and artificial networks.
Abstract:We introduce Compartmentalized Diffusion Models (CDM), a method to train different diffusion models (or prompts) on distinct data sources and arbitrarily compose them at inference time. The individual models can be trained in isolation, at different times, and on different distributions and domains and can be later composed to achieve performance comparable to a paragon model trained on all data simultaneously. Furthermore, each model only contains information about the subset of the data it was exposed to during training, enabling several forms of training data protection. In particular, CDMs are the first method to enable both selective forgetting and continual learning for large-scale diffusion models, as well as allowing serving customized models based on the user's access rights. CDMs also allow determining the importance of a subset of the data in generating particular samples.
Abstract:We describe a first step towards learning general-purpose visual representations of physical scenes using only image prediction as a training criterion. To do so, we first define "physical scene" and show that, even though different agents may maintain different representations of the same scene, the underlying physical scene that can be inferred is unique. Then, we show that NeRFs cannot represent the physical scene, as they lack extrapolation mechanisms. Those, however, could be provided by Diffusion Models, at least in theory. To test this hypothesis empirically, NeRFs can be combined with Diffusion Models, a process we refer to as NeRF Diffusion, used as unsupervised representations of the physical scene. Our analysis is limited to visual data, without external grounding mechanisms that can be provided by independent sensory modalities.
Abstract:We investigate whether prompts learned independently for different tasks can be later combined through prompt algebra to obtain a model that supports composition of tasks. We consider Visual Language Models (VLM) with prompt tuning as our base classifier and formally define the notion of prompt algebra. We propose constrained prompt tuning to improve performance of the composite classifier. In the proposed scheme, prompts are constrained to appear in the lower dimensional subspace spanned by the basis vectors of the pre-trained vocabulary. Further regularization is added to ensure that the learned prompt is grounded correctly to the existing pre-trained vocabulary. We demonstrate the effectiveness of our method on object classification and object-attribute classification datasets. On average, our composite model obtains classification accuracy within 2.5% of the best base model. On UTZappos it improves classification accuracy over the best base model by 8.45% on average.
Abstract:Recovering the latent factors of variation of high dimensional data has so far focused on simple synthetic settings. Mostly building on unsupervised and weakly-supervised objectives, prior work missed out on the positive implications for representation learning on real world data. In this work, we propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation. Assuming each supervised task only depends on an unknown subset of the factors of variation, we disentangle the feature space of a supervised multi-task model, with features activating sparsely across different tasks and information being shared as appropriate. Importantly, we never directly observe the factors of variations but establish that access to multiple tasks is sufficient for identifiability under sufficiency and minimality assumptions. We validate our approach on six real world distribution shift benchmarks, and different data modalities (images, text), demonstrating how disentangled representations can be transferred to real settings.
Abstract:We present Synergy Aware Forgetting Ensemble (SAFE), a method to adapt large models on a diverse collection of data while minimizing the expected cost to remove the influence of training samples from the trained model. This process, also known as selective forgetting or unlearning, is often conducted by partitioning a dataset into shards, training fully independent models on each, then ensembling the resulting models. Increasing the number of shards reduces the expected cost to forget but at the same time it increases inference cost and reduces the final accuracy of the model since synergistic information between samples is lost during the independent model training. Rather than treating each shard as independent, SAFE introduces the notion of a shard graph, which allows incorporating limited information from other shards during training, trading off a modest increase in expected forgetting cost with a significant increase in accuracy, all while still attaining complete removal of residual influence after forgetting. SAFE uses a lightweight system of adapters which can be trained while reusing most of the computations. This allows SAFE to be trained on shards an order-of-magnitude smaller than current state-of-the-art methods (thus reducing the forgetting costs) while also maintaining high accuracy, as we demonstrate empirically on fine-grained computer vision datasets.
Abstract:Responsible use of data is an indispensable part of any machine learning (ML) implementation. ML developers must carefully collect and curate their datasets, and document their provenance. They must also make sure to respect intellectual property rights, preserve individual privacy, and use data in an ethical way. Over the past few years, ML models have significantly increased in size and complexity. These models require a very large amount of data and compute capacity to train, to the extent that any defects in the training corpus cannot be trivially remedied by retraining the model from scratch. Despite sophisticated controls on training data and a significant amount of effort dedicated to ensuring that training corpora are properly composed, the sheer volume of data required for the models makes it challenging to manually inspect each datum comprising a training corpus. One potential fix for training corpus data defects is model disgorgement -- the elimination of not just the improperly used data, but also the effects of improperly used data on any component of an ML model. Model disgorgement techniques can be used to address a wide range of issues, such as reducing bias or toxicity, increasing fidelity, and ensuring responsible usage of intellectual property. In this paper, we introduce a taxonomy of possible disgorgement methods that are applicable to modern ML systems. In particular, we investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
Abstract:We introduce Train/Test-Time Adaptation with Retrieval (${\rm T^3AR}$), a method to adapt models both at train and test time by means of a retrieval module and a searchable pool of external samples. Before inference, ${\rm T^3AR}$ adapts a given model to the downstream task using refined pseudo-labels and a self-supervised contrastive objective function whose noise distribution leverages retrieved real samples to improve feature adaptation on the target data manifold. The retrieval of real images is key to ${\rm T^3AR}$ since it does not rely solely on synthetic data augmentations to compensate for the lack of adaptation data, as typically done by other adaptation algorithms. Furthermore, thanks to the retrieval module, our method gives the user or service provider the possibility to improve model adaptation on the downstream task by incorporating further relevant data or to fully remove samples that may no longer be available due to changes in user preference after deployment. First, we show that ${\rm T^3AR}$ can be used at training time to improve downstream fine-grained classification over standard fine-tuning baselines, and the fewer the adaptation data the higher the relative improvement (up to 13%). Second, we apply ${\rm T^3AR}$ for test-time adaptation and show that exploiting a pool of external images at test-time leads to more robust representations over existing methods on DomainNet-126 and VISDA-C, especially when few adaptation data are available (up to 8%).
Abstract:We propose InCA, a lightweight method for transfer learning that cross-attends to any activation layer of a pre-trained model. During training, InCA uses a single forward pass to extract multiple activations, which are passed to external cross-attention adapters, trained anew and combined or selected for downstream tasks. We show that, even when selecting a single top-scoring adapter, InCA achieves performance comparable to full fine-tuning, at a cost comparable to fine-tuning just the last layer. For example, with a cross-attention probe 1.3% the size of a pre-trained ViT-L/16 model, we achieve performance within 0.2% of the full fine-tuning paragon at 51% training cost of the baseline, on average across 11 downstream classification tasks. Unlike other forms of efficient adaptation, InCA does not require backpropagating through the pre-trained model, thus leaving its execution unaltered at both training and inference. The versatility of InCA is best illustrated in fine-grained tasks, which may require accessing information absent in the last layer but accessible in intermediate layer activations. Since the backbone is fixed, InCA allows parallel ensembling as well as parallel execution of multiple tasks. InCA achieves state-of-the-art performance in the ImageNet-to-Sketch multi-task benchmark.