Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"music generation": models, code, and papers

TreeGAN: Syntax-Aware Sequence Generation with Generative Adversarial Networks

Aug 22, 2018
Xinyue Liu, Xiangnan Kong, Lei Liu, Kuorong Chiang

Generative Adversarial Networks (GANs) have shown great capacity on image generation, in which a discriminative model guides the training of a generative model to construct images that resemble real images. Recently, GANs have been extended from generating images to generating sequences (e.g., poems, music and codes). Existing GANs on sequence generation mainly focus on general sequences, which are grammar-free. In many real-world applications, however, we need to generate sequences in a formal language with the constraint of its corresponding grammar. For example, to test the performance of a database, one may want to generate a collection of SQL queries, which are not only similar to the queries of real users, but also follow the SQL syntax of the target database. Generating such sequences is highly challenging because both the generator and discriminator of GANs need to consider the structure of the sequences and the given grammar in the formal language. To address these issues, we study the problem of syntax-aware sequence generation with GANs, in which a collection of real sequences and a set of pre-defined grammatical rules are given to both discriminator and generator. We propose a novel GAN framework, namely TreeGAN, to incorporate a given Context-Free Grammar (CFG) into the sequence generation process. In TreeGAN, the generator employs a recurrent neural network (RNN) to construct a parse tree. Each generated parse tree can then be translated to a valid sequence of the given grammar. The discriminator uses a tree-structured RNN to distinguish the generated trees from real trees. We show that TreeGAN can generate sequences for any CFG and its generation fully conforms with the given syntax. Experiments on synthetic and real data sets demonstrated that TreeGAN significantly improves the quality of the sequence generation in context-free languages.

* IEEE International Conference on Data Mining (ICDM'18) 

Learning to Fuse Music Genres with Generative Adversarial Dual Learning

Dec 05, 2017
Zhiqian Chen, Chih-Wei Wu, Yen-Cheng Lu, Alexander Lerch, Chang-Tien Lu

FusionGAN is a novel genre fusion framework for music generation that integrates the strengths of generative adversarial networks and dual learning. In particular, the proposed method offers a dual learning extension that can effectively integrate the styles of the given domains. To efficiently quantify the difference among diverse domains and avoid the vanishing gradient issue, FusionGAN provides a Wasserstein based metric to approximate the distance between the target domain and the existing domains. Adopting the Wasserstein distance, a new domain is created by combining the patterns of the existing domains using adversarial learning. Experimental results on public music datasets demonstrated that our approach could effectively merge two genres.

* International Conference on Data Mining - New Orleans, 2017 

Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models

Feb 07, 2018
Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha Farias, Alán Aspuru-Guzik

In unsupervised data generation tasks, besides the generation of a sample based on previous observations, one would often like to give hints to the model in order to bias the generation towards desirable metrics. We propose a method that combines Generative Adversarial Networks (GANs) and reinforcement learning (RL) in order to accomplish exactly that. While RL biases the data generation process towards arbitrary metrics, the GAN component of the reward function ensures that the model still remembers information learned from data. We build upon previous results that incorporated GANs and RL in order to generate sequence data and test this model in several settings for the generation of molecules encoded as text sequences (SMILES) and in the context of music generation, showing for each case that we can effectively bias the generation process towards desired metrics.

* 10 pages, 7 figures 

Unconditional Audio Generation with Generative Adversarial Networks and Cycle Regularization

May 18, 2020
Jen-Yu Liu, Yu-Hua Chen, Yin-Cheng Yeh, Yi-Hsuan Yang

In a recent paper, we have presented a generative adversarial network (GAN)-based model for unconditional generation of the mel-spectrograms of singing voices. As the generator of the model is designed to take a variable-length sequence of noise vectors as input, it can generate mel-spectrograms of variable length. However, our previous listening test shows that the quality of the generated audio leaves room for improvement. The present paper extends and expands that previous work in the following aspects. First, we employ a hierarchical architecture in the generator to induce some structure in the temporal dimension. Second, we introduce a cycle regularization mechanism to the generator to avoid mode collapse. Third, we evaluate the performance of the new model not only for generating singing voices, but also for generating speech voices. Evaluation result shows that new model outperforms the prior one both objectively and subjectively. We also employ the model to unconditionally generate sequences of piano and violin music and find the result promising. Audio examples, as well as the code for implementing our model, will be publicly available online upon paper publication.


Rhythm, Chord and Melody Generation for Lead Sheets using Recurrent Neural Networks

Feb 21, 2020
Cedric De Boom, Stephanie Van Laere, Tim Verbelen, Bart Dhoedt

Music that is generated by recurrent neural networks often lacks a sense of direction and coherence. We therefore propose a two-stage LSTM-based model for lead sheet generation, in which the harmonic and rhythmic templates of the song are produced first, after which, in a second stage, a sequence of melody notes is generated conditioned on these templates. A subjective listening test shows that our approach outperforms the baselines and increases perceived musical coherence.

* 8 pages, 2 figures, 3 tables, 2 appendices 

Enabling Factorized Piano Music Modeling and Generation with the MAESTRO Dataset

Oct 30, 2018
Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, Douglas Eck

Generating musical audio directly with neural networks is notoriously difficult because it requires coherently modeling structure at many different timescales. Fortunately, most music is also highly structured and can be represented as discrete note events played on musical instruments. Herein, we show that by using notes as an intermediate representation, we can train a suite of models capable of transcribing, composing, and synthesizing audio waveforms with coherent musical structure on timescales spanning six orders of magnitude (~0.1 ms to ~100 s), a process we call Wave2Midi2Wave. This large advance in the state of the art is enabled by our release of the new MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization) dataset, composed of over 172 hours of virtuosic piano performances captured with fine alignment (~3 ms) between note labels and audio waveforms. The networks and the dataset together present a promising approach toward creating new expressive and interpretable neural models of music.

* Examples available at 

DeepDrum: An Adaptive Conditional Neural Network

Sep 17, 2018
Dimos Makris, Maximos Kaliakatsos-Papakostas, Katia Lida Kermanidis

Considering music as a sequence of events with multiple complex dependencies, the Long Short-Term Memory (LSTM) architecture has proven very efficient in learning and reproducing musical styles. However, the generation of rhythms requires additional information regarding musical structure and accompanying instruments. In this paper we present DeepDrum, an adaptive Neural Network capable of generating drum rhythms under constraints imposed by Feed-Forward (Conditional) Layers which contain musical parameters along with given instrumentation information (e.g. bass and guitar notes). Results on generated drum sequences are presented indicating that DeepDrum is effective in producing rhythms that resemble the learned style, while at the same time conforming to given constraints that were unknown during the training process.

* 2018 Joint Workshop on Machine Learning for Music. The Federated Artificial Intelligence Meeting (FAIM), a joint workshop program of ICML, IJCAI/ECAI, and AAMAS 

Encoding Musical Style with Transformer Autoencoders

Dec 10, 2019
Kristy Choi, Curtis Hawthorne, Ian Simon, Monica Dinculescu, Jesse Engel

We consider the problem of learning high-level controls over the global structure of sequence generation, particularly in the context of symbolic music generation with complex language models. In this work, we present the Transformer autoencoder, which aggregates encodings of the input data across time to obtain a global representation of style from a given performance. We show it is possible to combine this global embedding with other temporally distributed embeddings, enabling improved control over the separate aspects of performance style and and melody. Empirically, we demonstrate the effectiveness of our method on a variety of music generation tasks on the MAESTRO dataset and a YouTube dataset with 10,000+ hours of piano performances, where we achieve improvements in terms of log-likelihood and mean listening scores as compared to relevant baselines.


Music2Dance: Music-driven Dance Generation using WaveNet

Feb 02, 2020
Wenlin Zhuang, Congyi Wang, Siyu Xia, Jinxiang Chai, Yangang Wang

In this paper, we propose a novel system, named as Music2Dance, for addressing the problem of fully automatic music and choreography. Our key idea is to shift the WaveNet, which is originally designed for speech generation, to the human motion synthesis. To balance the big differences between these two tasks, we propose a novel network structure. Typically, being regarded as the local condition for our network, the music features are first extracted by considering the characteristics of rhythms and melody. In addition, the types of dance are then designed as the global condition for the network. Both of the two conditions are utilized to stabilize the network training. Beyond the network architecture, another main challenge is the lack of data. In order to further tackle the obstacle, we have captured the synchronized music-dance pairs by professional dancers, and thus build a high-quality music-dance pair dataset. Experiments have demonstrated the performance of the proposed system and the proposed method can achieve the state-of-the-art results.


AI Song Contest: Human-AI Co-Creation in Songwriting

Oct 12, 2020
Cheng-Zhi Anna Huang, Hendrik Vincent Koops, Ed Newton-Rex, Monica Dinculescu, Carrie J. Cai

Machine learning is challenging the way we make music. Although research in deep generative models has dramatically improved the capability and fluency of music models, recent work has shown that it can be challenging for humans to partner with this new class of algorithms. In this paper, we present findings on what 13 musician/developer teams, a total of 61 users, needed when co-creating a song with AI, the challenges they faced, and how they leveraged and repurposed existing characteristics of AI to overcome some of these challenges. Many teams adopted modular approaches, such as independently running multiple smaller models that align with the musical building blocks of a song, before re-combining their results. As ML models are not easily steerable, teams also generated massive numbers of samples and curated them post-hoc, or used a range of strategies to direct the generation, or algorithmically ranked the samples. Ultimately, teams not only had to manage the "flare and focus" aspects of the creative process, but also juggle them with a parallel process of exploring and curating multiple ML models and outputs. These findings reflect a need to design machine learning-powered music interfaces that are more decomposable, steerable, interpretable, and adaptive, which in return will enable artists to more effectively explore how AI can extend their personal expression.

* ISMIR 2020 
* 6 pages + 3 pages of references