What is cancer detection? Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
Papers and Code
May 24, 2025
Abstract:Breast cancer is the most commonly occurring cancer worldwide. This cancer caused 670,000 deaths globally in 2022, as reported by the WHO. Yet since health officials began routine mammography screening in age groups deemed at risk in the 1980s, breast cancer mortality has decreased by 40% in high-income nations. Every day, a greater and greater number of people are receiving a breast cancer diagnosis. Reducing cancer-related deaths requires early detection and treatment. This paper compares two convolutional neural networks called ConvNeXT and EfficientNet to predict the likelihood of cancer in mammograms from screening exams. Preprocessing of the images, classification, and performance evaluation are main parts of the whole procedure. Several evaluation metrics were used to compare and evaluate the performance of the models. The result shows that ConvNeXT generates better results with a 94.33% AUC score, 93.36% accuracy, and 95.13% F-score compared to EfficientNet with a 92.34% AUC score, 91.47% accuracy, and 93.06% F-score on RSNA screening mammography breast cancer dataset.
Via

May 28, 2025
Abstract:Magnetic Particle Imaging (MPI) is a promising tomographic technique for visualizing the spatio-temporal distribution of superparamagnetic nanoparticles, with applications ranging from cancer detection to real-time cardiovascular monitoring. Traditional MPI reconstruction relies on either time-consuming calibration (measured system matrix) or model-based simulation of the forward operator. Recent developments have shown the applicability of Chebyshev polynomials to multi-dimensional Lissajous Field-Free Point (FFP) scans. This method is bound to the particular choice of sinusoidal scanning trajectories. In this paper, we present the first reconstruction on real 2D MPI data with a trajectory-independent model-based MPI reconstruction algorithm. We further develop the zero-shot Plug-and-Play (PnP) algorithm of the authors -- with automatic noise level estimation -- to address the present deconvolution problem, leveraging a state-of-the-art denoiser trained on natural images without retraining on MPI-specific data. We evaluate our method on the publicly available 2D FFP MPI dataset ``MPIdata: Equilibrium Model with Anisotropy", featuring scans of six phantoms acquired using a Bruker preclinical scanner. Moreover, we show reconstruction performed on custom data on a 2D scanner with additional high-frequency excitation field and partial data. Our results demonstrate strong reconstruction capabilities across different scanning scenarios -- setting a precedent for general-purpose, flexible model-based MPI reconstruction.
* 10 pages, 5 figures. This work has been submitted to the IEEE for
possible publication
Via

May 30, 2025
Abstract:Traditional diagnostic methods like colonoscopy are invasive yet critical tools necessary for accurately diagnosing colorectal cancer (CRC). Detection of CRC at early stages is crucial for increasing patient survival rates. However, colonoscopy is dependent on obtaining adequate and high-quality endoscopic images. Prolonged invasive procedures are inherently risky for patients, while suboptimal or insufficient images hamper diagnostic accuracy. These images, typically derived from video frames, often exhibit similar patterns, posing challenges in discrimination. To overcome these challenges, we propose a novel Deep Learning network built on a Few-Shot Learning architecture, which includes a tailored feature extractor, task interpolation, relational embedding, and a bi-level routing attention mechanism. The Few-Shot Learning paradigm enables our model to rapidly adapt to unseen fine-grained endoscopic image patterns, and the task interpolation augments the insufficient images artificially from varied instrument viewpoints. Our relational embedding approach discerns critical intra-image features and captures inter-image transitions between consecutive endoscopic frames, overcoming the limitations of Convolutional Neural Networks (CNNs). The integration of a light-weight attention mechanism ensures a concentrated analysis of pertinent image regions. By training on diverse datasets, the model's generalizability and robustness are notably improved for handling endoscopic images. Evaluated on Kvasir dataset, our model demonstrated superior performance, achieving an accuracy of 90.1\%, precision of 0.845, recall of 0.942, and an F1 score of 0.891. This surpasses current state-of-the-art methods, presenting a promising solution to the challenges of invasive colonoscopy by optimizing CRC detection through advanced image analysis.
* 2024 IEEE Conference on Artificial Intelligence (CAI), 2024,
839-844
* 6 pages, 15 figures
Via

Jun 08, 2025
Abstract:Brain tumors, regardless of being benign or malignant, pose considerable health risks, with malignant tumors being more perilous due to their swift and uncontrolled proliferation, resulting in malignancy. Timely identification is crucial for enhancing patient outcomes, particularly in nations such as Bangladesh, where healthcare infrastructure is constrained. Manual MRI analysis is arduous and susceptible to inaccuracies, rendering it inefficient for prompt diagnosis. This research sought to tackle these problems by creating an automated brain tumor classification system utilizing MRI data obtained from many hospitals in Bangladesh. Advanced deep learning models, including VGG16, VGG19, and ResNet50, were utilized to classify glioma, meningioma, and various brain cancers. Explainable AI (XAI) methodologies, such as Grad-CAM and Grad-CAM++, were employed to improve model interpretability by emphasizing the critical areas in MRI scans that influenced the categorization. VGG16 achieved the most accuracy, attaining 99.17%. The integration of XAI enhanced the system's transparency and stability, rendering it more appropriate for clinical application in resource-limited environments such as Bangladesh. This study highlights the capability of deep learning models, in conjunction with explainable artificial intelligence (XAI), to enhance brain tumor detection and identification in areas with restricted access to advanced medical technologies.
* 2024 6th International Conference on Sustainable Technologies for
Industry 5.0 (STI)
Via

May 27, 2025
Abstract:Background and objective: Micro-ultrasound (micro-US) is a novel imaging modality with diagnostic accuracy comparable to MRI for detecting clinically significant prostate cancer (csPCa). We investigated whether artificial intelligence (AI) interpretation of micro-US can outperform clinical screening methods using PSA and digital rectal examination (DRE). Methods: We retrospectively studied 145 men who underwent micro-US guided biopsy (79 with csPCa, 66 without). A self-supervised convolutional autoencoder was used to extract deep image features from 2D micro-US slices. Random forest classifiers were trained using five-fold cross-validation to predict csPCa at the slice level. Patients were classified as csPCa-positive if 88 or more consecutive slices were predicted positive. Model performance was compared with a classifier using PSA, DRE, prostate volume, and age. Key findings and limitations: The AI-based micro-US model and clinical screening model achieved AUROCs of 0.871 and 0.753, respectively. At a fixed threshold, the micro-US model achieved 92.5% sensitivity and 68.1% specificity, while the clinical model showed 96.2% sensitivity but only 27.3% specificity. Limitations include a retrospective single-center design and lack of external validation. Conclusions and clinical implications: AI-interpreted micro-US improves specificity while maintaining high sensitivity for csPCa detection. This method may reduce unnecessary biopsies and serve as a low-cost alternative to PSA-based screening. Patient summary: We developed an AI system to analyze prostate micro-ultrasound images. It outperformed PSA and DRE in detecting aggressive cancer and may help avoid unnecessary biopsies.
Via

May 25, 2025
Abstract:Accurate tumour segmentation is vital for various targeted diagnostic and therapeutic procedures for cancer, e.g., planning biopsies or tumour ablations. Manual delineation is extremely labour-intensive, requiring substantial expert time. Fully-supervised machine learning models aim to automate such localisation tasks, but require a large number of costly and often subjective 3D voxel-level labels for training. The high-variance and subjectivity in such labels impacts model generalisability, even when large datasets are available. Histopathology labels may offer more objective labels but the infeasibility of acquiring pixel-level annotations to develop tumour localisation methods based on histology remains challenging in-vivo. In this work, we propose a novel weakly-supervised semantic segmentation framework called SPARS (Self-Play Adversarial Reinforcement Learning for Segmentation), which utilises an object presence classifier, trained on a small number of image-level binary cancer presence labels, to localise cancerous regions on CT scans. Such binary labels of patient-level cancer presence can be sourced more feasibly from biopsies and histopathology reports, enabling a more objective cancer localisation on medical images. Evaluating with real patient data, we observed that SPARS yielded a mean dice score of $77.3 \pm 9.4$, which outperformed other weakly-supervised methods by large margins. This performance was comparable with recent fully-supervised methods that require voxel-level annotations. Our results demonstrate the potential of using SPARS to reduce the need for extensive human-annotated labels to detect cancer in real-world healthcare settings.
* Accepted at Medical Image Understanding and Analysis (MIUA) 2025
Via

Jun 04, 2025
Abstract:Gene set analysis (GSA) is a foundational approach for interpreting genomic data of diseases by linking genes to biological processes. However, conventional GSA methods overlook clinical context of the analyses, often generating long lists of enriched pathways with redundant, nonspecific, or irrelevant results. Interpreting these requires extensive, ad-hoc manual effort, reducing both reliability and reproducibility. To address this limitation, we introduce cGSA, a novel AI-driven framework that enhances GSA by incorporating context-aware pathway prioritization. cGSA integrates gene cluster detection, enrichment analysis, and large language models to identify pathways that are not only statistically significant but also biologically meaningful. Benchmarking on 102 manually curated gene sets across 19 diseases and ten disease-related biological mechanisms shows that cGSA outperforms baseline methods by over 30%, with expert validation confirming its increased precision and interpretability. Two independent case studies in melanoma and breast cancer further demonstrate its potential to uncover context-specific insights and support targeted hypothesis generation.
* 56 pages, 9 figures, 1 table
Via

May 30, 2025
Abstract:This paper introduces a unified approach to cluster refinement and anomaly detection in datasets. We propose a novel algorithm that iteratively reduces the intra-cluster variance of N clusters until a global minimum is reached, yielding tighter clusters than the standard k-means algorithm. We evaluate the method using intrinsic measures for unsupervised learning, including the silhouette coefficient, Calinski-Harabasz index, and Davies-Bouldin index, and extend it to anomaly detection by identifying points whose assignment causes a significant variance increase. External validation on synthetic data and the UCI Breast Cancer and UCI Wine Quality datasets employs the Jaccard similarity score, V-measure, and F1 score. Results show variance reductions of 18.7% and 88.1% on the synthetic and Wine Quality datasets, respectively, along with accuracy and F1 score improvements of 22.5% and 20.8% on the Wine Quality dataset.
* IEEE ICCCSP
Via

May 14, 2025
Abstract:Deep learning models have shown promise in lung pathology detection from chest X-rays, but widespread clinical adoption remains limited due to opaque model decision-making. In prior work, we introduced ClinicXAI, a human-centric, expert-guided concept bottleneck model (CBM) designed for interpretable lung cancer diagnosis. We now extend that approach and present XpertXAI, a generalizable expert-driven model that preserves human-interpretable clinical concepts while scaling to detect multiple lung pathologies. Using a high-performing InceptionV3-based classifier and a public dataset of chest X-rays with radiology reports, we compare XpertXAI against leading post-hoc explainability methods and an unsupervised CBM, XCBs. We assess explanations through comparison with expert radiologist annotations and medical ground truth. Although XpertXAI is trained for multiple pathologies, our expert validation focuses on lung cancer. We find that existing techniques frequently fail to produce clinically meaningful explanations, omitting key diagnostic features and disagreeing with radiologist judgments. XpertXAI not only outperforms these baselines in predictive accuracy but also delivers concept-level explanations that better align with expert reasoning. While our focus remains on explainability in lung cancer detection, this work illustrates how human-centric model design can be effectively extended to broader diagnostic contexts - offering a scalable path toward clinically meaningful explainable AI in medical diagnostics.
Via

May 19, 2025
Abstract:Accurately registering breast MR images from different time points enables the alignment of anatomical structures and tracking of tumor progression, supporting more effective breast cancer detection, diagnosis, and treatment planning. However, the complexity of dense tissue and its highly non-rigid nature pose challenges for conventional registration methods, which primarily focus on aligning general structures while overlooking intricate internal details. To address this, we propose \textbf{GuidedMorph}, a novel two-stage registration framework designed to better align dense tissue. In addition to a single-scale network for global structure alignment, we introduce a framework that utilizes dense tissue information to track breast movement. The learned transformation fields are fused by introducing the Dual Spatial Transformer Network (DSTN), improving overall alignment accuracy. A novel warping method based on the Euclidean distance transform (EDT) is also proposed to accurately warp the registered dense tissue and breast masks, preserving fine structural details during deformation. The framework supports paradigms that require external segmentation models and with image data only. It also operates effectively with the VoxelMorph and TransMorph backbones, offering a versatile solution for breast registration. We validate our method on ISPY2 and internal dataset, demonstrating superior performance in dense tissue, overall breast alignment, and breast structural similarity index measure (SSIM), with notable improvements by over 13.01% in dense tissue Dice, 3.13% in breast Dice, and 1.21% in breast SSIM compared to the best learning-based baseline.
Via
