What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
May 09, 2025
Abstract:Recent advancements in foundation models, such as the Segment Anything Model (SAM), have shown strong performance in various vision tasks, particularly image segmentation, due to their impressive zero-shot segmentation capabilities. However, effectively adapting such models for medical image classification is still a less explored topic. In this paper, we introduce a new framework to adapt SAM for medical image classification. First, we utilize the SAM image encoder as a feature extractor to capture segmentation-based features that convey important spatial and contextual details of the image, while freezing its weights to avoid unnecessary overhead during training. Next, we propose a novel Spatially Localized Channel Attention (SLCA) mechanism to compute spatially localized attention weights for the feature maps. The features extracted from SAM's image encoder are processed through SLCA to compute attention weights, which are then integrated into deep learning classification models to enhance their focus on spatially relevant or meaningful regions of the image, thus improving classification performance. Experimental results on three public medical image classification datasets demonstrate the effectiveness and data-efficiency of our approach.
Via

May 08, 2025
Abstract:The paper considers the use of GPT models with retrieval-augmented generation (RAG) for qualitative and quantitative analytics on NATO sentiments, NATO unity and NATO Article 5 trust opinion scores in different web sources: news sites found via Google Search API, Youtube videos with comments, and Reddit discussions. A RAG approach using GPT-4.1 model was applied to analyse news where NATO related topics were discussed. Two levels of RAG analytics were used: on the first level, the GPT model generates qualitative news summaries and quantitative opinion scores using zero-shot prompts; on the second level, the GPT model generates the summary of news summaries. Quantitative news opinion scores generated by the GPT model were analysed using Bayesian regression to get trend lines. The distributions found for the regression parameters make it possible to analyse an uncertainty in specified news opinion score trends. Obtained results show a downward trend for analysed scores of opinion related to NATO unity. This approach does not aim to conduct real political analysis; rather, it consider AI based approaches which can be used for further analytics as a part of a complex analytical approach. The obtained results demonstrate that the use of GPT models for news analysis can give informative qualitative and quantitative analytics, providing important insights. The dynamic model based on neural ordinary differential equations was considered for modelling public opinions. This approach makes it possible to analyse different scenarios for evolving public opinions.
Via

May 12, 2025
Abstract:Obtaining real-world network datasets is often challenging because of privacy, security, and computational constraints. In the absence of such datasets, graph generative models become essential tools for creating synthetic datasets. In this paper, we introduce a novel machine learning model for generating high-fidelity synthetic network flow datasets that are representative of real-world networks. Our approach involves the generation of dynamic multigraphs using a stochastic Kronecker graph generator for structure generation and a tabular generative adversarial network for feature generation. We further employ an XGBoost (eXtreme Gradient Boosting) model for graph alignment, ensuring accurate overlay of features onto the generated graph structure. We evaluate our model using new metrics that assess both the accuracy and diversity of the synthetic graphs. Our results demonstrate improvements in accuracy over previous large-scale graph generation methods while maintaining similar efficiency. We also explore the trade-off between accuracy and diversity in synthetic graph dataset creation, a topic not extensively covered in related works. Our contributions include the synthesis and evaluation of large real-world netflow datasets and the definition of new metrics for evaluating synthetic graph generative models.
Via

May 17, 2025
Abstract:Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups.
* Accepted at ACL Main 2025
Via

May 12, 2025
Abstract:Bayesian inference has many advantages in decision making of agents (e.g. robotics/simulative agent) over a regular data-driven black-box neural network: Data-efficiency, generalization, interpretability, and safety where these advantages benefit directly/indirectly from the uncertainty quantification of Bayesian inference. However, there are few comprehensive reviews to summarize the progress of Bayesian inference on reinforcement learning (RL) for decision making to give researchers a systematic understanding. This paper focuses on combining Bayesian inference with RL that nowadays is an important approach in agent decision making. To be exact, this paper discusses the following five topics: 1) Bayesian methods that have potential for agent decision making. First basic Bayesian methods and models (Bayesian rule, Bayesian learning, and Bayesian conjugate models) are discussed followed by variational inference, Bayesian optimization, Bayesian deep learning, Bayesian active learning, Bayesian generative models, Bayesian meta-learning, and lifelong Bayesian learning. 2) Classical combinations of Bayesian methods with model-based RL (with approximation methods), model-free RL, and inverse RL. 3) Latest combinations of potential Bayesian methods with RL. 4) Analytical comparisons of methods that combine Bayesian methods with RL with respect to data-efficiency, generalization, interpretability, and safety. 5) In-depth discussions in six complex problem variants of RL, including unknown reward, partial-observability, multi-agent, multi-task, non-linear non-Gaussian, and hierarchical RL problems and the summary of how Bayesian methods work in the data collection, data processing and policy learning stages of RL to pave the way for better agent decision-making strategies.
Via

May 09, 2025
Abstract:In the last few decades, Machine Learning (ML) has achieved significant success across domains ranging from healthcare, sustainability, and the social sciences, to criminal justice and finance. But its deployment in increasingly sophisticated, critical, and sensitive areas affecting individuals, the groups they belong to, and society as a whole raises critical concerns around fairness, transparency, robustness, and privacy, among others. As the complexity and scale of ML systems and of the settings in which they are deployed grow, so does the need for responsible ML methods that address these challenges while providing guaranteed performance in deployment. Mixed-integer optimization (MIO) offers a powerful framework for embedding responsible ML considerations directly into the learning process while maintaining performance. For example, it enables learning of inherently transparent models that can conveniently incorporate fairness or other domain specific constraints. This tutorial paper provides an accessible and comprehensive introduction to this topic discussing both theoretical and practical aspects. It outlines some of the core principles of responsible ML, their importance in applications, and the practical utility of MIO for building ML models that align with these principles. Through examples and mathematical formulations, it illustrates practical strategies and available tools for efficiently solving MIO problems for responsible ML. It concludes with a discussion on current limitations and open research questions, providing suggestions for future work.
* 56 pages, 10 figures
Via

May 07, 2025
Abstract:Detecting fake interactions in digital communication platforms remains a challenging and insufficiently addressed problem. These interactions may appear as harmless spam or escalate into sophisticated scam attempts, making it difficult to flag malicious intent early. Traditional detection methods often rely on static anomaly detection techniques that fail to adapt to dynamic conversational shifts. One key limitation is the misinterpretation of benign topic transitions referred to as concept drift as fraudulent behavior, leading to either false alarms or missed threats. We propose a two stage detection framework that first identifies suspicious conversations using a tailored ensemble classification model. To improve the reliability of detection, we incorporate a concept drift analysis step using a One Class Drift Detector (OCDD) to isolate conversational shifts within flagged dialogues. When drift is detected, a large language model (LLM) assesses whether the shift indicates fraudulent manipulation or a legitimate topic change. In cases where no drift is found, the behavior is inferred to be spam like. We validate our framework using a dataset of social engineering chat scenarios and demonstrate its practical advantages in improving both accuracy and interpretability for real time fraud detection. To contextualize the trade offs, we compare our modular approach against a Dual LLM baseline that performs detection and judgment using different language models.
Via

May 17, 2025
Abstract:Content moderation research has recently made significant advances, but still fails to serve the majority of the world's languages due to the lack of resources, leaving millions of vulnerable users to online hostility. This work presents a large-scale human-annotated multi-task benchmark dataset for abusive language detection in Tigrinya social media with joint annotations for three tasks: abusiveness, sentiment, and topic classification. The dataset comprises 13,717 YouTube comments annotated by nine native speakers, collected from 7,373 videos with a total of over 1.2 billion views across 51 channels. We developed an iterative term clustering approach for effective data selection. Recognizing that around 64% of Tigrinya social media content uses Romanized transliterations rather than native Ge'ez script, our dataset accommodates both writing systems to reflect actual language use. We establish strong baselines across the tasks in the benchmark, while leaving significant challenges for future contributions. Our experiments reveal that small, specialized multi-task models outperform the current frontier models in the low-resource setting, achieving up to 86% accuracy (+7 points) in abusiveness detection. We make the resources publicly available to promote research on online safety.
Via

May 07, 2025
Abstract:Convergence analysis is a fundamental research topic in evolutionary computation (EC). The commonly used analysis method models the EC algorithm as a homogeneous Markov chain for analysis, which is not always suitable for different EC variants, and also sometimes causes misuse and confusion due to their complex process. In this article, we categorize the existing researches on convergence analysis in EC algorithms into stable convergence and global convergence, and then prove that the conditions for these two convergence properties are somehow mutually exclusive. Inspired by this proof, we propose a new scope and domain measure comparison (SDMC) method for analyzing the global convergence of EC algorithms and provide a rigorous proof of its necessity and sufficiency as an alternative condition. Unlike traditional methods, the SDMC method is straightforward, bypasses Markov chain modeling, and minimizes errors from misapplication as it only focuses on the measure of the algorithm's search scope. We apply SDMC to two algorithm types that are unsuitable for traditional methods, confirming its effectiveness in global convergence analysis. Furthermore, we apply the SDMC method to explore the gene targeting mechanism's impact on the global convergence in large-scale global optimization, deriving insights into how to design EC algorithms that guarantee global convergence and exploring how theoretical analysis can guide EC algorithm design.
* 14 pages, 8 figures
Via

May 06, 2025
Abstract:Adversarial examples have revealed the vulnerability of deep learning models and raised serious concerns about information security. The transfer-based attack is a hot topic in black-box attacks that are practical to real-world scenarios where the training datasets, parameters, and structure of the target model are unknown to the attacker. However, few methods consider the particularity of class-specific deep models for fine-grained vision tasks, such as face recognition (FR), giving rise to unsatisfactory attacking performance. In this work, we first investigate what in a face exactly contributes to the embedding learning of FR models and find that both decisive and auxiliary facial features are specific to each FR model, which is quite different from the biological mechanism of human visual system. Accordingly we then propose a novel attack method named Attention-aggregated Attack (AAA) to enhance the transferability of adversarial examples against FR, which is inspired by the attention divergence and aims to destroy the facial features that are critical for the decision-making of other FR models by imitating their attentions on the clean face images. Extensive experiments conducted on various FR models validate the superiority and robust effectiveness of the proposed method over existing methods.
Via
