What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
May 21, 2025
Abstract:Code-switching is a common phenomenon of alternating between different languages in the same utterance, thought, or conversation. We posit that humans code-switch because they feel more comfortable talking about certain topics and domains in one language than another. With the rise of knowledge-intensive language models, we ask ourselves the next, natural question: Could models hold more knowledge on some topics in some language X? More importantly, could we improve reasoning by changing the language that reasoning is performed in? We coin the term Language Specific Knowledge (LSK) to represent this phenomenon. As ethnic cultures tend to develop alongside different languages, we employ culture-specific datasets (that contain knowledge about cultural and social behavioral norms). We find that language models can perform better when using chain-of-thought reasoning in some languages other than English, sometimes even better in low-resource languages. Paired with previous works showing that semantic similarity does not equate to representational similarity, we hypothesize that culturally specific texts occur more abundantly in corresponding languages, enabling specific knowledge to occur only in specific "expert" languages. Motivated by our initial results, we design a simple methodology called LSKExtractor to benchmark the language-specific knowledge present in a language model and, then, exploit it during inference. We show our results on various models and datasets, showing an average relative improvement of 10% in accuracy. Our research contributes to the open-source development of language models that are inclusive and more aligned with the cultural and linguistic contexts in which they are deployed.
Via

May 26, 2025
Abstract:Today, large language models are widely used as judges to evaluate responses from other language models. Hence, it is imperative to benchmark and improve these LLM-judges on real-world language model usage: a typical human-assistant conversation is lengthy, and shows significant diversity in topics, intents, and requirements across turns, e.g. social interactions, task requests, feedback. We present Amulet, a framework that leverages pertinent linguistic concepts of dialog-acts and maxims to improve the accuracy of LLM-judges on preference data with complex, multi-turn conversational context. Amulet presents valuable insights about (a) the communicative structures and intents present in the conversation (dialog acts), and (b) the satisfaction of conversational principles (maxims) by the preference responses, and uses them to make judgments. On four challenging datasets, Amulet shows that (a) humans frequently (60 to 70 percent of the time) change their intents from one turn of the conversation to the next, and (b) in 75 percent of instances, the preference responses can be differentiated via dialog acts and/or maxims, reiterating the latter's significance in judging such data. Amulet can be used either as a judge by applying the framework to a single LLM, or integrated into a jury with different LLM judges; our judges and juries show strong improvements on relevant baselines for all four datasets.
Via

May 16, 2025
Abstract:Recommender systems filter contents/items valuable to users by inferring preferences from user features and historical behaviors. Mainstream approaches follow the learning-to-rank paradigm, which focus on discovering and modeling item topics (e.g., categories), and capturing user preferences on these topics based on historical interactions. However, this paradigm often neglects the modeling of user characteristics and their social roles, which are logical confounders influencing the correlated interest and user preference transition. To bridge this gap, we introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles and learn the logical relations between item topics and user social roles. We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model (LLM) and recommendation systems, for which we propose TagCF. On the one hand, the exploitation of the LLM's world knowledge and logic inference ability produces a virtual logic graph that reveals dynamic and expressive knowledge of users, augmenting the recommendation performance. On the other hand, the user role aligns the user behavioral logic with the observed user feedback, refining our understanding of user behaviors. Additionally, we also show that the extracted user-item logic graph is empirically a general knowledge that can benefit a wide range of recommendation tasks, and conduct experiments on industrial and several public datasets as verification.
Via

May 21, 2025
Abstract:With the emergence of ChatGPT, Transformer models have significantly advanced text classification and related tasks. Decoder-only models such as Llama exhibit strong performance and flexibility, yet they suffer from inefficiency on inference due to token-by-token generation, and their effectiveness in text classification tasks heavily depends on prompt quality. Moreover, their substantial GPU resource requirements often limit widespread adoption. Thus, the question of whether smaller language models are capable of effectively handling text classification tasks emerges as a topic of significant interest. However, the selection of appropriate models and methodologies remains largely underexplored. In this paper, we conduct a comprehensive evaluation of prompt engineering and supervised fine-tuning methods for transformer-based text classification. Specifically, we focus on practical industrial scenarios, including email classification, legal document categorization, and the classification of extremely long academic texts. We examine the strengths and limitations of smaller models, with particular attention to both their performance and their efficiency in Video Random-Access Memory (VRAM) utilization, thereby providing valuable insights for the local deployment and application of compact models in industrial settings.
Via

May 23, 2025
Abstract:This paper aims to address a gap in major Islamic topics by developing an ontology for the Book of Purification in Islam. Many authoritative Islamic texts begin with the Book of Purification, as it is essential for performing prayer (the second pillar of Islam after Shahadah, the profession of faith) and other religious duties such as Umrah and Hajj. The ontology development strategy followed six key steps: (1) domain identification, (2) knowledge acquisition, (3) conceptualization, (4) classification, (5) integration and implementation, and (6) ontology generation. This paper includes examples of the constructed tables and classifications. The focus is on the design and analysis phases, as technical implementation is beyond the scope of this study. However, an initial implementation is provided to illustrate the steps of the proposed strategy. The developed ontology ensures reusability by formally defining and encoding the key concepts, attributes, and relationships related to the Book of Purification. This structured representation is intended to support knowledge sharing and reuse.
* 9 pages
Via

May 21, 2025
Abstract:We investigate the impacts of NLP research published in top-tier conferences (i.e., ACL, EMNLP, and NAACL) from 1979 to 2024. By analyzing citations from research articles and external sources such as patents, media, and policy documents, we examine how different NLP topics are consumed both within the academic community and by the broader public. Our findings reveal that language modeling has the widest internal and external influence, while linguistic foundations have lower impacts. We also observe that internal and external impacts generally align, but topics like ethics, bias, and fairness show significant attention in policy documents with much fewer academic citations. Additionally, external domains exhibit distinct preferences, with patents focusing on practical NLP applications and media and policy documents engaging more with the societal implications of NLP models.
* 7 pages; Accepted to ACL 2025
Via

May 19, 2025
Abstract:DeepSeek recently released R1, a high-performing large language model (LLM) optimized for reasoning tasks. Despite its efficient training pipeline, R1 achieves competitive performance, even surpassing leading reasoning models like OpenAI's o1 on several benchmarks. However, emerging reports suggest that R1 refuses to answer certain prompts related to politically sensitive topics in China. While existing LLMs often implement safeguards to avoid generating harmful or offensive outputs, R1 represents a notable shift - exhibiting censorship-like behavior on politically charged queries. In this paper, we investigate this phenomenon by first introducing a large-scale set of heavily curated prompts that get censored by R1, covering a range of politically sensitive topics, but are not censored by other models. We then conduct a comprehensive analysis of R1's censorship patterns, examining their consistency, triggers, and variations across topics, prompt phrasing, and context. Beyond English-language queries, we explore censorship behavior in other languages. We also investigate the transferability of censorship to models distilled from the R1 language model. Finally, we propose techniques for bypassing or removing this censorship. Our findings reveal possible additional censorship integration likely shaped by design choices during training or alignment, raising concerns about transparency, bias, and governance in language model deployment.
Via

May 18, 2025
Abstract:Image Generation models are a trending topic nowadays, with many people utilizing Artificial Intelligence models in order to generate images. There are many such models which, given a prompt of a text, will generate an image which depicts said prompt. There are many image generation models, such as Latent Diffusion Models, Denoising Diffusion Probabilistic Models, Generative Adversarial Networks and many more. When generating images, these models can generate sensitive image data, which can be threatening to privacy or may violate copyright laws of private entities. Machine unlearning aims at removing the influence of specific data subsets from the trained models and in the case of image generation models, remove the influence of a concept such that the model is unable to generate said images of the concept when prompted. Conventional retraining of the model can take upto days, hence fast algorithms are the need of the hour. In this paper we propose an algorithm that aims to remove the influence of concepts in diffusion models through updating the gradients of the final layers of the text encoders. Using a weighted loss function, we utilize backpropagation in order to update the weights of the final layers of the Text Encoder componet of the Stable Diffusion Model, removing influence of the concept from the text-image embedding space, such that when prompted, the result is an image not containing the concept. The weighted loss function makes use of Textual Inversion and Low-Rank Adaptation.We perform our experiments on Latent Diffusion Models, namely the Stable Diffusion v2 model, with an average concept unlearning runtime of 50 seconds using 4-5 images.
Via

May 22, 2025
Abstract:As open-source language models (OSMs) grow more capable and are widely shared and finetuned, ensuring model provenance, i.e., identifying the origin of a given model instance, has become an increasingly important issue. At the same time, existing backdoor-based model fingerprinting techniques often fall short of achieving key requirements of real-world model ownership detection. In this work, we build on the observation that while current open-source model watermarks fail to achieve reliable content traceability, they can be effectively adapted to address the challenge of model provenance. To this end, we introduce the concept of domain-specific watermarking for model fingerprinting. Rather than watermarking all generated content, we train the model to embed watermarks only within specified subdomains (e.g., particular languages or topics). This targeted approach ensures detection reliability, while improving watermark durability and quality under a range of real-world deployment settings. Our evaluations show that domain-specific watermarking enables model fingerprinting with strong statistical guarantees, controllable false positive rates, high detection power, and preserved generation quality. Moreover, we find that our fingerprints are inherently stealthy and naturally robust to real-world variability across deployment scenarios.
Via

May 22, 2025
Abstract:Biological collections house millions of specimens documenting Earth's biodiversity, with digital images increasingly available through open-access platforms. Most imaging protocols were developed for human visual interpretation without considering computational analysis requirements. This paper aims to bridge the gap between current imaging practices and the potential for automated analysis by presenting key considerations for creating biological specimen images optimized for computer vision applications. We provide conceptual computer vision topics for context, addressing fundamental concerns including model generalization, data leakage, and comprehensive metadata documentation, and outline practical guidance on specimen imagine, and data storage. These recommendations were synthesized through interdisciplinary collaboration between taxonomists, collection managers, ecologists, and computer scientists. Through this synthesis, we have identified ten interconnected considerations that form a framework for successfully integrating biological specimen images into computer vision pipelines. The key elements include: (1) comprehensive metadata documentation, (2) standardized specimen positioning, (3) consistent size and color calibration, (4) protocols for handling multiple specimens in one image, (5) uniform background selection, (6) controlled lighting, (7) appropriate resolution and magnification, (8) optimal file formats, (9) robust data archiving strategies, and (10) accessible data sharing practices. By implementing these recommendations, collection managers, taxonomists, and biodiversity informaticians can generate images that support automated trait extraction, species identification, and novel ecological and evolutionary analyses at unprecedented scales. Successful implementation lies in thorough documentation of methodological choices.
Via
