What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
May 21, 2025
Abstract:The surge of user-generated online content presents a wealth of insights into customer preferences and market trends. However, the highly diverse, complex, and context-rich nature of such contents poses significant challenges to traditional opinion mining approaches. To address this, we introduce Online Opinion Mining Benchmark (OOMB), a novel dataset and evaluation protocol designed to assess the ability of large language models (LLMs) to mine opinions effectively from diverse and intricate online environments. OOMB provides extensive (entity, feature, opinion) tuple annotations and a comprehensive opinion-centric summary that highlights key opinion topics within each content, thereby enabling the evaluation of both the extractive and abstractive capabilities of models. Through our proposed benchmark, we conduct a comprehensive analysis of which aspects remain challenging and where LLMs exhibit adaptability, to explore whether they can effectively serve as opinion miners in realistic online scenarios. This study lays the foundation for LLM-based opinion mining and discusses directions for future research in this field.
* 8 pages, 6 figures
Via

May 21, 2025
Abstract:Video quality assessment (VQA) is a challenging research topic with broad applications. Effective VQA necessitates sensitivity to pixel-level distortions and a comprehensive understanding of video context to accurately determine the perceptual impact of distortions. Traditional hand-crafted and learning-based VQA models mainly focus on pixel-level distortions and lack contextual understanding, while recent LLM-based models struggle with sensitivity to small distortions or handle quality scoring and description as separate tasks. To address these shortcomings, we introduce CP-LLM: a Context and Pixel aware Large Language Model. CP-LLM is a novel multimodal LLM architecture featuring dual vision encoders designed to independently analyze perceptual quality at both high-level (video context) and low-level (pixel distortion) granularity, along with a language decoder subsequently reasons about the interplay between these aspects. This design enables CP-LLM to simultaneously produce robust quality scores and interpretable quality descriptions, with enhanced sensitivity to pixel distortions (e.g. compression artifacts). The model is trained via a multi-task pipeline optimizing for score prediction, description generation, and pairwise comparisons. Experiment results demonstrate that CP-LLM achieves state-of-the-art cross-dataset performance on established VQA benchmarks and superior robustness to pixel distortions, confirming its efficacy for comprehensive and practical video quality assessment in real-world scenarios.
* Under review
Via

May 22, 2025
Abstract:In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% with only a marginal performance drop of 2-10% in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct extensive ablation studies to identify best practices for multilingual model compression using these techniques.
* Pre-print
Via

May 27, 2025
Abstract:Recent advancements in large language models (LLMs) have shown promise in generating novel research ideas. However, these ideas often face challenges related to feasibility and expected effectiveness. This paper explores how augmenting LLMs with relevant data during the idea generation process can enhance the quality of generated ideas. We introduce two ways of incorporating data: (1) providing metadata during the idea generation stage to guide LLMs toward feasible directions, and (2) adding automatic validation during the idea selection stage to assess the empirical plausibility of hypotheses within ideas. We conduct experiments in the social science domain, specifically with climate negotiation topics, and find that metadata improves the feasibility of generated ideas by 20%, while automatic validation improves the overall quality of selected ideas by 7%. A human study shows that LLM-generated ideas, along with their related data and validation processes, inspire researchers to propose research ideas with higher quality. Our work highlights the potential of data-driven research idea generation, and underscores the practical utility of LLM-assisted ideation in real-world academic settings.
Via

May 26, 2025
Abstract:Recently, large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, yet they remain prone to hallucinations when reasoning with insufficient internal knowledge. While integrating LLMs with knowledge graphs (KGs) provides access to structured, verifiable information, existing approaches often generate incomplete or factually inconsistent reasoning paths. To this end, we propose Self-Reflective Planning (SRP), a framework that synergizes LLMs with KGs through iterative, reference-guided reasoning. Specifically, given a question and topic entities, SRP first searches for references to guide planning and reflection. In the planning process, it checks initial relations and generates a reasoning path. After retrieving knowledge from KGs through a reasoning path, it implements iterative reflection by judging the retrieval result and editing the reasoning path until the answer is correctly retrieved. Extensive experiments on three public datasets demonstrate that SRP surpasses various strong baselines and further underscore its reliable reasoning ability.
Via

May 18, 2025
Abstract:The widespread integration of Large Language Models (LLMs) across various sectors has highlighted the need for empirical research to understand their biases, thought patterns, and societal implications to ensure ethical and effective use. In this study, we propose a novel framework for evaluating LLMs, focusing on uncovering their ideological biases through a quantitative analysis of 436 binary-choice questions, many of which have no definitive answer. By applying our framework to ChatGPT and Gemini, findings revealed that while LLMs generally maintain consistent opinions on many topics, their ideologies differ across models and languages. Notably, ChatGPT exhibits a tendency to change their opinion to match the questioner's opinion. Both models also exhibited problematic biases, unethical or unfair claims, which might have negative societal impacts. These results underscore the importance of addressing both ideological and ethical considerations when evaluating LLMs. The proposed framework offers a flexible, quantitative method for assessing LLM behavior, providing valuable insights for the development of more socially aligned AI systems.
* 2025 International Joint Conference on Neural Networks (IJCNN
2025)
* 23 pages, 5 figures, 17 tables
Via

May 24, 2025
Abstract:We introduce the Exemplar-Based Expository Text Generation task, aiming to generate an expository text on a new topic using an exemplar on a similar topic. Current methods fall short due to their reliance on extensive exemplar data, difficulty in adapting topic-specific content, and issues with long-text coherence. To address these challenges, we propose the concept of Adaptive Imitation and present a novel Recurrent Plan-then-Adapt (RePA) framework. RePA leverages large language models (LLMs) for effective adaptive imitation through a fine-grained plan-then-adapt process. RePA also enables recurrent segment-by-segment imitation, supported by two memory structures that enhance input clarity and output coherence. We also develop task-specific evaluation metrics--imitativeness, adaptiveness, and adaptive-imitativeness--using LLMs as evaluators. Experimental results across our collected three diverse datasets demonstrate that RePA surpasses existing baselines in producing factual, consistent, and relevant texts for this task.
* Accepted to ACL 2025. Camera-ready version
Via

May 26, 2025
Abstract:Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
* In proceedings of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23,
Detroit, Michigan, USA
Via

May 10, 2025
Abstract:BERTopic is a topic modeling algorithm that leverages transformer-based embeddings to create dense clusters, enabling the estimation of topic structures and the extraction of valuable insights from a corpus of documents. This approach allows users to efficiently process large-scale text data and gain meaningful insights into its structure. While BERTopic is a powerful tool, embedding preparation can vary, including extracting representations from intermediate model layers and applying transformations to these embeddings. In this study, we evaluate 18 different embedding representations and present findings based on experiments conducted on three diverse datasets. To assess the algorithm's performance, we report topic coherence and topic diversity metrics across all experiments. Our results demonstrate that, for each dataset, it is possible to find an embedding configuration that performs better than the default setting of BERTopic. Additionally, we investigate the influence of stop words on different embedding configurations.
Via

May 25, 2025
Abstract:Large language model (LLM) research has grown rapidly, along with increasing concern about their limitations such as failures in reasoning, hallucinations, and limited multilingual capability. In this survey, we conduct a data-driven, semi-automated review of research on limitations of LLM (LLLMs) from 2022 to 2024 using a bottom-up approach. From a corpus of 250,000 ACL and arXiv papers, we identify 14,648 relevant papers using keyword filtering, LLM-based classification, validated against expert labels, and topic clustering (via two approaches, HDBSCAN+BERTopic and LlooM). We find that LLM-related research increases over fivefold in ACL and fourfold in arXiv. Since 2022, LLLMs research grows even faster, reaching over 30% of LLM papers by late 2024. Reasoning remains the most studied limitation, followed by generalization, hallucination, bias, and security. The distribution of topics in the ACL dataset stays relatively stable over time, while arXiv shifts toward safety and controllability (with topics like security risks, alignment, hallucinations, knowledge editing), and multimodality between 2022 and 2024. We release a dataset of annotated abstracts and a validated methodology, and offer a quantitative view of trends in LLM limitations research.
* This manuscript is currently under review at ACM Computing Surveys
Via
