Abstract:Ground beetles are a highly sensitive and speciose biological indicator, making them vital for monitoring biodiversity. However, they are currently an underutilized resource due to the manual effort required by taxonomic experts to perform challenging species differentiations based on subtle morphological differences, precluding widespread applications. In this paper, we evaluate 12 vision models on taxonomic classification across four diverse, long-tailed datasets spanning over 230 genera and 1769 species, with images ranging from controlled laboratory settings to challenging field-collected (in-situ) photographs. We further explore taxonomic classification in two important real-world contexts: sample efficiency and domain adaptation. Our results show that the Vision and Language Transformer combined with an MLP head is the best performing model, with 97\% accuracy at genus and 94\% at species level. Sample efficiency analysis shows that we can reduce train data requirements by up to 50\% with minimal compromise in performance. The domain adaptation experiments reveal significant challenges when transferring models from lab to in-situ images, highlighting a critical domain gap. Overall, our study lays a foundation for large-scale automated taxonomic classification of beetles, and beyond that, advances sample-efficient learning and cross-domain adaptation for diverse long-tailed ecological datasets.
Abstract:The practical application of AI tools for specific computer vision tasks relies on the "small-data regime" of hundreds to thousands of labeled samples. This small-data regime is vital for applications requiring expensive expert annotations, such as ecological monitoring, medical diagnostics or industrial quality control. We find, however, that computer vision research has ignored the small data regime as evaluations increasingly focus on zero- and few-shot learning. We use the Natural World Tasks (NeWT) benchmark to compare multi-modal large language models (MLLMs) and vision-only methods across varying training set sizes. MLLMs exhibit early performance plateaus, while vision-only methods improve throughout the small-data regime, with performance gaps widening beyond 10 training examples. We provide the first comprehensive comparison between these approaches in small-data contexts and advocate for explicit small-data evaluations in AI research to better bridge theoretical advances with practical deployments.