Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Multivariate time series (MTS) anomaly diagnosis, which encompasses both anomaly detection and localization, is critical for the safety and reliability of complex, large-scale real-world systems. The vast majority of existing anomaly diagnosis methods offer limited theoretical insights, especially for anomaly localization, which is a vital but largely unexplored area. The aim of this contribution is to study the learning process of a Transformer when applied to MTS by revealing connections to statistical time series methods. Based on these theoretical insights, we propose the Attention Low-Rank Transformer (ALoRa-T) model, which applies low-rank regularization to self-attention, and we introduce the Attention Low-Rank score, effectively capturing the temporal characteristics of anomalies. Finally, to enable anomaly localization, we propose the ALoRa-Loc method, a novel approach that associates anomalies to specific variables by quantifying interrelationships among time series. Extensive experiments and real data analysis, show that the proposed methodology significantly outperforms state-of-the-art methods in both detection and localization tasks.
LLM agents hold significant promise for advancing scientific research. To accelerate this progress, we introduce AIRS-Bench (the AI Research Science Benchmark), a suite of 20 tasks sourced from state-of-the-art machine learning papers. These tasks span diverse domains, including language modeling, mathematics, bioinformatics, and time series forecasting. AIRS-Bench tasks assess agentic capabilities over the full research lifecycle -- including idea generation, experiment analysis and iterative refinement -- without providing baseline code. The AIRS-Bench task format is versatile, enabling easy integration of new tasks and rigorous comparison across different agentic frameworks. We establish baselines using frontier models paired with both sequential and parallel scaffolds. Our results show that agents exceed human SOTA in four tasks but fail to match it in sixteen others. Even when agents surpass human benchmarks, they do not reach the theoretical performance ceiling for the underlying tasks. These findings indicate that AIRS-Bench is far from saturated and offers substantial room for improvement. We open-source the AIRS-Bench task definitions and evaluation code to catalyze further development in autonomous scientific research.
Large-scale, cross-species plant distribution prediction plays a crucial role in biodiversity conservation, yet modeling efforts in this area still face significant challenges due to the sparsity and bias of observational data. Presence-Absence (PA) data provide accurate and noise-free labels, but are costly to obtain and limited in quantity; Presence-Only (PO) data, by contrast, offer broad spatial coverage and rich spatiotemporal distribution, but suffer from severe label noise in negative samples. To address these real-world constraints, this paper proposes a multimodal fusion framework that fully leverages the strengths of both PA and PO data. We introduce an innovative pseudo-label aggregation strategy for PO data based on the geographic coverage of satellite imagery, enabling geographic alignment between the label space and remote sensing feature space. In terms of model architecture, we adopt Swin Transformer Base as the backbone for satellite imagery, utilize the TabM network for tabular feature extraction, retain the Temporal Swin Transformer for time-series modeling, and employ a stackable serial tri-modal cross-attention mechanism to optimize the fusion of heterogeneous modalities. Furthermore, empirical analysis reveals significant geographic distribution shifts between PA training and test samples, and models trained by directly mixing PO and PA data tend to experience performance degradation due to label noise in PO data. To address this, we draw on the mixture-of-experts paradigm: test samples are partitioned according to their spatial proximity to PA samples, and different models trained on distinct datasets are used for inference and post-processing within each partition. Experiments on the GeoLifeCLEF 2025 dataset demonstrate that our approach achieves superior predictive performance in scenarios with limited PA coverage and pronounced distribution shifts.
As a fundamental data mining task, unsupervised time series anomaly detection (TSAD) aims to build a model for identifying abnormal timestamps without assuming the availability of annotations. A key challenge in unsupervised TSAD is that many anomalies are too subtle to exhibit detectable deviation in any single view (e.g., time domain), and instead manifest as inconsistencies across multiple views like time, frequency, and a mixture of resolutions. However, most cross-view methods rely on feature or score fusion and do not enforce analysis-synthesis consistency, meaning the frequency branch is not required to reconstruct the time signal through an inverse transform, and vice versa. In this paper, we present Learnable Fusion of Tri-view Tokens (LEFT), a unified unsupervised TSAD framework that models anomalies as inconsistencies across complementary representations. LEFT learns feature tokens from three views of the same input time series: frequency-domain tokens that embed periodicity information, time-domain tokens that capture local dynamics, and multi-scale tokens that learns abnormal patterns at varying time series granularities. By learning a set of adaptive Nyquist-constrained spectral filters, the original time series is rescaled into multiple resolutions and then encoded, allowing these multi-scale tokens to complement the extracted frequency- and time-domain information. When generating the fused representation, we introduce a novel objective that reconstructs fine-grained targets from coarser multi-scale structure, and put forward an innovative time-frequency cycle consistency constraint to explicitly regularize cross-view agreement. Experiments on real-world benchmarks show that LEFT yields the best detection accuracy against SOTA baselines, while achieving a 5x reduction on FLOPs and 8x speed-up for training.
Functional magnetic resonance imaging (fMRI) enables non-invasive brain disorder classification by capturing blood-oxygen-level-dependent (BOLD) signals. However, most existing methods rely on functional connectivity (FC) via Pearson correlation, which reduces 4D BOLD signals to static 2D matrices, discarding temporal dynamics and capturing only linear inter-regional relationships. In this work, we benchmark state-of-the-art temporal models (e.g., time-series models such as PatchTST, TimesNet, and TimeMixer) on raw BOLD signals across five public datasets. Results show these models consistently outperform traditional FC-based approaches, highlighting the value of directly modeling temporal information such as cycle-like oscillatory fluctuations and drift-like slow baseline trends. Building on this insight, we propose DeCI, a simple yet effective framework that integrates two key principles: (i) Cycle and Drift Decomposition to disentangle cycle and drift within each ROI (Region of Interest); and (ii) Channel-Independence to model each ROI separately, improving robustness and reducing overfitting. Extensive experiments demonstrate that DeCI achieves superior classification accuracy and generalization compared to both FC-based and temporal baselines. Our findings advocate for a shift toward end-to-end temporal modeling in fMRI analysis to better capture complex brain dynamics. The code is available at https://github.com/Levi-Ackman/DeCI.
Recently, there has been great success in leveraging pre-trained large language models (LLMs) for time series analysis. The core idea lies in effectively aligning the modality between natural language and time series. However, the multi-scale structures of natural language and time series have not been fully considered, resulting in insufficient utilization of LLMs capabilities. To this end, we propose MSH-LLM, a Multi-Scale Hypergraph method that aligns Large Language Models for time series analysis. Specifically, a hyperedging mechanism is designed to enhance the multi-scale semantic information of time series semantic space. Then, a cross-modality alignment (CMA) module is introduced to align the modality between natural language and time series at different scales. In addition, a mixture of prompts (MoP) mechanism is introduced to provide contextual information and enhance the ability of LLMs to understand the multi-scale temporal patterns of time series. Experimental results on 27 real-world datasets across 5 different applications demonstrate that MSH-LLM achieves the state-of-the-art results.
Many fields collect large-scale temporal data through repeated measurements (trials), where each trial is labeled with a set of metadata variables spanning several categories. For example, a trial in a neuroscience study may be linked to a value from category (a): task difficulty, and category (b): animal choice. A critical challenge in time-series analysis is to understand how these labels are encoded within the multi-trial observations, and disentangle the distinct effect of each label entry across categories. Here, we present MILCCI, a novel data-driven method that i) identifies the interpretable components underlying the data, ii) captures cross-trial variability, and iii) integrates label information to understand each category's representation within the data. MILCCI extends a sparse per-trial decomposition that leverages label similarities within each category to enable subtle, label-driven cross-trial adjustments in component compositions and to distinguish the contribution of each category. MILCCI also learns each component's corresponding temporal trace, which evolves over time within each trial and varies flexibly across trials. We demonstrate MILCCI's performance through both synthetic and real-world examples, including voting patterns, online page view trends, and neuronal recordings.
Recovering a unique causal graph from observational data is an ill-posed problem because multiple generating mechanisms can lead to the same observational distribution. This problem becomes solvable only by exploiting specific structural or distributional assumptions. While recent work has separately utilized time-series dynamics or multi-environment heterogeneity to constrain this problem, we integrate both as complementary sources of heterogeneity. This integration yields unified necessary identifiability conditions and enables a rigorous analysis of the statistical limits of recovery under thin versus heavy-tailed noise. In particular, temporal structure is shown to effectively substitute for missing environmental diversity, possibly achieving identifiability even under insufficient heterogeneity. Extending this analysis to heavy-tailed (Student's t) distributions, we demonstrate that while geometric identifiability conditions remain invariant, the sample complexity diverges significantly from the Gaussian baseline. Explicit information-theoretic bounds quantify this cost of robustness, establishing the fundamental limits of covariance-based causal graph recovery methods in realistic non-stationary systems. This work shifts the focus from whether causal structure is identifiable to whether it is statistically recoverable in practice.
Time series analysis underpins many real-world applications, yet existing time-series-specific methods and pretrained large-model-based approaches remain limited in integrating intuitive visual reasoning and generalizing across tasks with adaptive tool usage. To address these limitations, we propose MAS4TS, a tool-driven multi-agent system for general time series tasks, built upon an Analyzer-Reasoner-Executor paradigm that integrates agent communication, visual reasoning, and latent reconstruction within a unified framework. MAS4TS first performs visual reasoning over time series plots with structured priors using a Vision-Language Model to extract temporal structures, and subsequently reconstructs predictive trajectories in latent space. Three specialized agents coordinate via shared memory and gated communication, while a router selects task-specific tool chains for execution. Extensive experiments on multiple benchmarks demonstrate that MAS4TS achieves state-of-the-art performance across a wide range of time series tasks, while exhibiting strong generalization and efficient inference.
Passive dynamic walkers are widely adopted as a mathematical model to represent biped walking. The stable locomotion of these models is limited to tilted surfaces, requiring gravitational energy. Various techniques, such as actuation through the ankle and hip joints, have been proposed to extend the applicability of these models to level ground and rough terrain with improved locomotion efficiency. However, most of these techniques rely on impulsive energy injection schemes and torsional springs, which are quite challenging to implement in a physical platform. Here, a new model is proposed, named triggering controlled ankle actuated compass gait (TC-AACG), which allows non-instantaneous compliant ankle pushoff. The proposed technique can be implemented in physical platforms via series elastic actuators (SEAs). Our systematic examination shows that the proposed approach extends the locomotion capabilities of a biped model compared to impulsive ankle pushoff approach. We provide extensive simulation analysis investigating the locomotion speed, mechanical cost of transport, and basin of attraction of the proposed model.