Abstract:Objective: ServiMon is designed to offer a scalable and intelligent pipeline for data collection and auditing to monitor distributed astronomical systems such as the ASTRI Mini-Array. The system enhances quality control, predictive maintenance, and real-time anomaly detection for telescope operations. Methods: ServiMon integrates cloud-native technologies-including Prometheus, Grafana, Cassandra, Kafka, and InfluxDB-for telemetry collection and processing. It employs machine learning algorithms, notably Isolation Forest, to detect anomalies in Cassandra performance metrics. Key indicators such as read/write latency, throughput, and memory usage are continuously monitored, stored as time-series data, and preprocessed for feature engineering. Anomalies detected by the model are logged in InfluxDB v2 and accessed via Flux for real-time monitoring and visualization. Results: AI-based anomaly detection increases system resilience by identifying performance degradation at an early stage, minimizing downtime, and optimizing telescope operations. Additionally, ServiMon supports astrostatistical analysis by correlating telemetry with observational data, thus enhancing scientific data quality. AI-generated alerts also improve real-time monitoring, enabling proactive system management. Conclusion: ServiMon's scalable framework proves effective for predictive maintenance and real-time monitoring of astronomical infrastructures. By leveraging cloud and edge computing, it is adaptable to future large-scale experiments, optimizing both performance and cost. The combination of machine learning and big data analytics makes ServiMon a robust and flexible solution for modern and next-generation observational astronomy.
Abstract:In this study, we investigate the effectiveness of advanced feature engineering and hybrid model architectures for anomaly detection in a multivariate industrial time series, focusing on a steam turbine system. We evaluate the impact of change point-derived statistical features, clustering-based substructure representations, and hybrid learning strategies on detection performance. Despite their theoretical appeal, these complex approaches consistently underperformed compared to a simple Random Forest + XGBoost ensemble trained on segmented data. The ensemble achieved an AUC-ROC of 0.976, F1-score of 0.41, and 100% early detection within the defined time window. Our findings highlight that, in scenarios with highly imbalanced and temporally uncertain data, model simplicity combined with optimized segmentation can outperform more sophisticated architectures, offering greater robustness, interpretability, and operational utility.
Abstract:This study introduces a predictive maintenance strategy for high pressure industrial compressors using sensor data and features derived from unsupervised clustering integrated into classification models. The goal is to enhance model accuracy and efficiency in detecting compressor failures. After data pre processing, sensitive clustering parameters were tuned to identify algorithms that best capture the dataset's temporal and operational characteristics. Clustering algorithms were evaluated using quality metrics like Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI), selecting those most effective at distinguishing between normal and non normal conditions. These features enriched regression models, improving failure detection accuracy by 4.87 percent on average. Although training time was reduced by 22.96 percent, the decrease was not statistically significant, varying across algorithms. Cross validation and key performance metrics confirmed the benefits of clustering based features in predictive maintenance models.